YAZILIM PROJESİ SEÇİM PROBLEMİNDE ÇOK AMAÇLI OPTİMİZASYON UYGULAMASI

İşletmeler bütçeleri dahilinde uygulamak istedikleri projeleri seçerken çok sayıda amacı göz önünde bulundururlar. Projenin türü ve işletmenin yapısına göre değişmekle birlikte, projenin faydası, karlılık, maliyet, verimlilik, risk ve sınırlı kaynaklar düşünülerek gerçekleştirilmeye çalışılmaktadır. Bu kriterler birbirleriyle ilişkili olduğundan, birlikte değerlendirilmeleri doğru bir seçimin yapılabilmesi için önemlidir. Bu çalışmada, bir yazılım firmasının yürüttüğü projeler içinden, belirlenen kriterler göz önüne alınarak en iyi projenin seçilmesi amaçlanmıştır. Çok Kriterli Karar Verme yöntemlerinden olan TOPSIS ve VIKOR ile projeler amaçları karşılama derecesine göre sıralanmıştır. Kriterler amaç fonksiyonları olarak düzenlenerek çok amaçlı evrimsel optimizasyon algoritması ile proje seçim problemi yeniden çözülmüştür. Tüm sonuçlar karşılaştırılarak en iyi projenin seçimi ile sonuca ulaşılmıştır

AN APPLICATION OF MULTIOPTIMIZATION ON SOFTWARE PROJECT SELECTION PROBLEM

Companies consider a large number of objectives while selecting the projects according to their budgets. Although it varies depending on the type of the project and structure of the company, benefits of the project, profitability, cost, efficiency and risk profile of the project are taken into account within limited resources. Because these objectives are interrelated, they should be evaluated together for a right selection of the solving method. In this study, it is aimed to select the best project of a software company. Firstly, TOPSIS and VIKOR methods are used to order projects from the best to the worst. Then, the selection problem is resolved by multiobjective genetic algorithm. All results are compared and the best project is selected

___

  • Amiri, B. (2012). A multi-objective hybrid optimization algorithm for project selection problem. J Basic Appl Sci Res, 2(7), 6995-7002.
  • Chatterjee P, Athawale, V.M., Chakraborty S. (2010). Selection of industrial robots using compromise ranking and outranking methods. Robotics and Computer-Integrated Manufacturing, 26(5), 483-489.
  • De Weck, O. (2004). Multiobjective optimization: History and promise. Invited Keynote Paper, GL2-2, The Third China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, Kanazawa, Japan.
  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). Chichester, UK: John Wiley & Sons.
  • Ghorbani, S. ve Rabbani, M. (2009). A new multi-objective algorithm for a project selection problem. Advances in Engineering Software, 40(1), 9-14.
  • Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine learning. Boston, MA: Addison-Wesley.
  • Hwang, C.L. ve Yoon, K. (1981). Multiple Attribute Decision Making. In: Lecture Notes in Economics and Mathematical Systems 186. Berlin: Springer-Verlag.
  • Kremmel, T., Kubalík, J., Biffl, S. (2010). Software project portfolio optimization algorithms. Applied Soft Computing, 11(1), 1416-1426. advanced
  • multiobjective evolutionary
  • Medaglia, A.L., Graves, S.B., Ringuest, J.L. (2007). A multiobjective evolutionary approach for linearly constrained project selection under Research, 179(3), 869-894. Journal of Operational
  • Miettinen, K. (1999). Nonlinear multiobjective optimization (Vol. 12). Springer.
  • Opricovic, S. ve Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156, 445-455.
  • Rabbani, M., Bajestani, M.A., Khoshkhou, G.B. (2010). A multi-objective particle swarm optimization for project selection problem. Expert Systems with Applications, 37(1), 315-321.
  • Ringuest, J.L. ve Graves, S.B. (1989). The linear multi-objective R&D project selection problem. IEEE Transactions on Engineering Management, 36(1), 54-57.
  • Sharma, T.N. (2011). Analysis of software cost estimation using COCOMO II. International Journal of Scientific & Engineering Research, 2(6), 1-5.
  • Triantaphyllou, E. ve Lin, C.T. (1996). Development and evaluation of five fuzzy multiattribute decision-making methods. International Journal of Approximate Reasoning, 14(4), 281-310.
  • Tzeng, G.H., Lin, C.W., Opricovic, S. (2005). Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy, 33, 1373-1383.
  • Zeleny, M. (1982). Multiple Criteria Decision Making. New York: McGraw- Hill.