ÜNİVERSİTE ÖĞRENCİLERİNİN FİZİK PROBLEMLERİNDE KULLANDIKLARI ÖZDÜZENLEME STRATEJİLERİ: CİNSİYET ve ÜNİVERSİTE ETKİLERİ

Bu çalışmanın amacı, üniversite öğrencilerinin fizik problemlerini çözmede özdüzenleme stratejilerini kullanım düzeylerini, cinsiyet ve öğrenim gördükleri üniversitenin özdüzenleme stratejilerini kullanımları üzerindeki etkilerini belirlemektir. Araştırmanın verileri, “Problem Çözmede Kullanılan Özdüzenleme Stratejileri Ölçeği” ile toplanmıştır. Bu araştırmada survey (tarama) yöntemi kullanılmıştır. Araştırmaya Balıkesir Üniversitesi Necatibey Eğitim Fakültesinde (n=150) ve Karadeniz Teknik Üniversitesi Fatih Eğitim Fakültesinde (n=113) öğrenim görmekte olan ve Genel Fizik dersi alan toplam n=263 gönüllü öğrenci katılmıştır. Verilerin çözümlemelerinde frekans, yüzde, ortalama, standart sapma ve tek yönlü MANOVA ve tek değişkenli ANOVA istatistiksel teknikleri kullanılmıştır. Araştırmanın sonucunda, üniversite düzeyinde fizik dersi alan öğrencilerin fizik problemlerini çözerken birçok özdüzenleme stratejisini sıklıkla kullandıkları, cinsiyet ve üniversite değişkenlerine göre öğrencilerin strateji kullanımları arasında önemli bir fark olmadığı belirlenmiştir.

SELF-REGULATED STRATEGIES USED BY UNDERGRADUATE STUDENTS IN PHYSICS PROBLEMS: EFFECTS of GENDER and UNIVERSITY

The aim of this research is to determine the usage level of the self-regulated strategies by undergraduate students while they are solving physics problems; and the effects of their gender and university which they attend on the usage level of these self-regulated strategies. Data of the research were collected by “Self-Regulated Strategy Scale Used in Problem Solving”. In this research, survey method was used. Totally n=263 volunteer students who takes General Physics course reading at Necatibey Education Faculty of Balıkesir University (n=150), and Fatih Education Faculty of Karadeniz (Black Sea) Technical University (n=113) had participated into the research. In analysis of data, the following statistical techniques such as frequency, percentage, mean, standard deviation, and one-way MANOVA and univariate ANOVA were used. As a result of the research, it is concluded that the undergraduate students who take physics course often use many selfregulated strategies while solving physics problems, and there is no significant difference between the students’ usage level of the strategies according to the variables of gender and university.

___

  • Açıkgöz, K. Ü. (2000). Etkili Öğrenme ve Öğretme (3.Baskı). İzmir: Kanyılmaz Matbaası.
  • Açıkgöz, K. Ü. (2003). Aktif öğrenme (3. Baskı). İzmir: Eğitim Dünyası Yayınları.
  • Alcı, B. ve Altun, S. (2007). Lise öğrencilerinin matematik dersine yönelik özdüzenleme ve bilişüstü becerileri, cinsiyete, sınıfa ve alanlara göre farklılaşmakta mıdır?. Ç. Ü.
  • Sosyal Bilimler Enstitüsü Dergisi, 16 (1), 33–44. Alcı, B., Erden, M. ve Baykal, A. (2010). Explanatory and predictive pattern of University students’ mathematics achievement and their perceived problem solving abilities, self efficacy perceptions, metacognitive self-regulation strategies, and national University entrance examination points. Boğaziçi University Journal of Education, 25 (2), 53-68.
  • Annevirta, T. & Vauras, M. (2006). Developmental changes og metacognitive skill in elementary school children. The Journal of Experimental Education, 74 (3), 197-225.
  • Armour-Thomas, E., Bruno, K. & Allen, B. A. (1992). Towards an understanding of higher order thinking among minority students. Psychology in the Schools, 29 (3), 273-280.
  • Arsal, Z. (2010). The effects of diaries on self-regulation strategies of preservice science teachers. International Journal of Environmental & Science Education, 5 (1), 85-103.
  • Case, L. P., Harris, K. R., & Graham, S. (1992). Improving the mathematical problem-solving skills of students with learning disabilities: Self-regulated strategy development. The Journal of Special Education, 26, 1-19.
  • Çalışkan, S., Selçuk Sezgin, G. ve Erol, M. (2008). Student teachers’ problem solving strategy usage in a physics course: Relationship with achievement levels. XIII. IOSTE Symposium, 993-1002.
  • Demirel, Ö. ve Ün, K. (1987). Eğitim Terimleri: Açıklamalar, Türkçe-İngilizce, İngilizce
  • Türkçe Sözlük, Ankara: Şafak Matbaası. Dhillon, A.S. (1998). Individual differences within problem-solving strategies used in physics. Science Education, 82, 379–406.
  • Eilam, B., Zeidner, M., & Aharon, I. (2009). Student conscientiousness, self-regulated learning, and science achievement: An explorative field study. Psychology in Schools, (5), 420-432.
  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L.B. Resnick (Ed.). The nature of intelligence (pp. 231-245). Mahwah, NJ: Lawrence Erlbaum.
  • Flavell, J. H. (1992). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. In T. O. Nelson (Ed.), Metacognition: core readings (pp. 3-8).
  • Boston: Allyn & Baker. Foshay, R. & Kirkley, J. (2003). Principles for Teaching Problem Solving. PLATO Learning. Retrieved http://www.plato.com/downloads/papers/paper_04.pdf. on April , , from
  • Georghiades, P. (2004). Making pupils’ conceptions of electricity more durable by means of situated metacognition. International Journal of Science Education, 26 (1), 85-99. Haşlaman, T. ve Aşkar, P. (2007). Programlama dersi ile ilgili özdüzenleyici öğrenme stratejileri ve başarı arasındaki ilişkinin incelenmesi.
  • Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 32, 110-122. Hofer, B., Yu, S. L. & Pintrich, P. R. (1998). Teaching college students to be self regulated learners. In Zimmerman and Shunk (Ed.) Self regulated learning from teaching to self reflective practice. London: Guilford Press.
  • Ibe, H. N. (2009). Metacognitive strategies on classroom participation and student achievement in senior secondary school science classrooms. Science Education International, 20 (1/2), 25-31.
  • İsrael, E. (2003). Problem Çözme Stratejileri, Başarı Düzeyi, Sosyo-Ekonomik Düzey ve Cinsiyet İlişkileri. Yayınlanmamış Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi
  • Eğitim Bilimleri Enstitüsü, İzmir. Leonard, W. J., Gerace, W. J., & Dufresne, R. J. (2002). Analysis-based problem solving: making analysis and reasoning the focus of physics instruction. Enseñanza de las
  • Ciencias (Science Teaching), 20 (3), 387–400. Meijer, J., Veenman, M.V.J. & van Hout-Wolters, B.H.A.M. (2006). Metacognitive activities in text-studying and problem-solving: Development of a taxonomy. Educational
  • Research and Evaluation, 12, 209-237. Mevarech, Z., & Kramarski, B. (1997). IMPROVE: a multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Reseacrh Journal, , 365-394.
  • Miller, J. W. (2000). Exploring the source of relf regulated learning: The influence of internal and external comparisons. Journal of Instructional Psychology, 27, 47-52.
  • Montague, M. (1992). The effects of cognitive and metacognitive strategy ınstruction on the mathematical problem solving of middle school students with learning dissabilities.
  • Journal of Learning Disabilities, 25(4), 230-248. Montague, M., Warger, C. L. & Morgan, H. (2000). Solve It Strategy instruction to improve mathematical problem solving. Learning Disabilities Research and Practice, 15, 110
  • Najar, R. L. (1999, July). Pathways to success: Learning strategy instruction in content curriculum. HERDSA Annual International Conference, Melbourne.
  • Neber, H., He, J., Liu, B-X. & Schofield, N. (2008). Chinese high-school students in physics classroom as active, self-regulated learners: Cognitive, motivational and environmental aspects, International Journal of Science and Mathematics Education, 6, 769-788.
  • Neto, A., & Valente, M. O. (1997, March). Problem solving in physics: Towards a metacognitively developed approach. Paper Presented at The Annual Meeting of The National Association for Research in Science Teaching, Oak Brook.
  • Nielsen, W. S., Nashon, S. & Anderson, D. (2009). Metacognitive engagement during field trip experiences: A case study of students in an amusement park physics program.
  • Journal of Research in Science Teaching, 46 (3), 265-288. Nietfeld, J., Cao, L. & Osborne, J. (2005). Metacognitive monitoring accuracy and student performance in the postsecondary classroom. The Journal of Experimental Education, ,(1), 7-28.
  • Pajares, F. & Graham, L. (1999). Self-efficacy, motivation constructs and mathematics performance of entering middle school students. Contemporary Educational Psychology, 24, 124-139.
  • Perels, F., Gürtler, T. & Schmitz, B. (2005). Training of self-regulatory and problem solving competence. Learning and Instruction, 15, 123-139.
  • Perfect, T. J. & Schwartz, B. L. (2002). Applied Metacognition. UK: Cambridge University Press.
  • Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41 (4), 219-225.
  • Reif, F., Larkin, J. H. & Brackett, G. C. (1976). Teaching general learning and problem solving skills. American Journal of Physics, 44, 212-217.
  • Rozencwajg, P. (2003). Metacognitive factors in scientific problem-solving strategies.
  • European Journal of Psychology of Education, XVIII (3), 281-294. Schraw, G. & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, , 351-373.
  • Schoenfeld, A. (1985). Mathematical problem solving. New York: Academic Press.
  • Selçuk, G. S., Çalışkan, S. ve Erol, M. (2006). Problem Çözme Stratejilerinin Kullanımı ve Fizik Başarısı. Çağdaş Eğitim Dergisi, 334, 15-23.
  • Selçuk Sezgin, G., Çalışkan, S. ve Erol, M. (2007). The effects of gender and grade levels on turkish physics teacher candidates' problem solving strategies. Journal of Turkish
  • Science Education (TUSED), 4 (1), 92-100. Sezgin, G., Çalışkan, S., Çallıca, H., Ellez, M. ve Kavcar, N. (2000). Fen öğretiminde problem çözme stratejilerinin kullanımına yönelik bir çalışma. IV. Fen Bilimleri Eğitimi
  • Kongresi Bildiri Kitabı, 239–242. Senemoğlu, N.(1998). Gelişim Öğrenme ve Öğretim. Ankara: Özsen Matbaası.
  • Sezgin, G., Çalışkan, S., Çallıca, H., Ellez, M. ve Kavcar, N. (2000). Fen öğretiminde problem çözme stratejilerinin kullanımına yönelik bir çalışma. IV. Fen Bilimleri
  • Eğitimi Kongresi Bildiri Kitapçığı, 239-242. Sperling, R. A., Howard, R. S., Staley, R. & DuBois, N. (2004). Metacognition and self regulated learning constructs. Educational Research & Evaluation, 10, 117-139.
  • Sungur, S. (2007). Modeling the relationships among students’ motivational beliefs, metacognitive strategy use, and effort regulation. Scandinavian Journal of
  • Educational Research, 51 (3), 315-326. Üredi, I. ve Üredi, L. (2005). İlköğretim 8. sınıf öğrencilerinin özdüzenleme stratejileri ve motivasyonel inançlarının matematik başarısını yordama gücü. Mersin Üniversitesi
  • Eğitim Fakültesi Dergisi, 1 (2), 250-260. Weinstein, C. E. & Mayer, R. E. (1986). The teaching of learning strategies. In M. C.
  • Wittrock (Ed.), Handbook of research on teaching(pp.315–327). New York: Macmillan. Yumuşak, N., Sungur, S. ve Çakıroğlu, J. (2007). Turkish high school students’ biology achievement in relation to academic self-regulation. Educational Research and Evaluation, 13, 53-69.