Kadmiyum Toksisitesi Altındaki Buğdayda Salisilik Asidin Apoplastik Antioksidatif Sistem Üzerine Etkileri

Bu çalışmada Salisilik asit (SA) uygulamasının, kadmiyum (Cd) stresine maruz bırakılmış buğdayın (Triticum aestivum L.) Bolal çeşidine ait yapraklarındaki apoplastik antioksidan enzim (katalaz, peroksidaz ve süperoksit dismutaz) aktiviteleri ile lipid peroksidasyonu ve hidrojen peroksit miktarı üzerine etkileri araştırılmıştır. Bitkiler 22/20 oC’de toplam 18 gün büyütülmüşlerdir. Bitki yapraklarına 12. gün farklı konsantrasyonlarda (0.01, 0.1, 1 mM) SA uygulanmış ve bundan 3 gün sonra, bitkilerin yetiştiği ortama farklı konsantrasyonlarda (25, 50, 100 μM) Cd uygulanmıştır. On sekizinci gün bitki yaprakları araştırmamızda deney materyali olarak kullanılmışlardır. SA uygulamaları, 50 ve 100 μM Cd’de katalaz (CAT) aktivitesini artırırken POX aktivitesini düşürmüştür. 25 ve 50 μM Cd’e maruz kalmış buğday yapraklarında ise SOD aktivitesini genelde artırmıştır. Ancak, 100 μM Cd’de aktiviteyi düşürmüştür. SA uygulamaları, 25, 50 ve 100 μM Cd etkisi altındaki buğdayda lipid peroksidasyonunu (LPO) düşürürken 25 μM Cd’de SA’nın 3 konsantrasyonuda H2O2 miktarını artırmıştır. SA 50 μM Cd’de H2O2 miktarını artırmıştır. 100 μM Cd’de 0.01 ve 0.1 mM SA uygulamaları aktiviteyi artırırken, 1 mM ise düşürmüştür. Sonuçlarımız bitkilere Cd stresine maruz kalmadan uygulanan SA’nın hem apoplastik antiokdidatif enzimleri hem de LPO ve H2O2 miktarlarını düzenleyerek bir koruma sağlayabildiğini göstermektedir.

___

  • Agarval, S. and Pandey V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48(4), 555-560.
  • Amjadi, Z.Namdjoyan, S. Soorki,A.A.(2021). Exogenous melatonin and salicylic acid alleviates cadmium toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 30:387–401
  • Angelini, R. and Federico R. (1989). Histochemical evidence of poliamin oxidation and generation of hydrogen peroxide in the cell wall. J.Plant Physiol, 135, 212-217.
  • Atıcı, Ö. Nalbantoğlu B. (1999a). Effect of apoplastic proteins on freezing tolerance in leaves. Phytochemistry, 50, 755-761.
  • Atıcı, Ö. and Nalbantoğlu B. (1999b). Apoplastic proteins associated with the cold acclimation process in leaves. Bio-Sci. Res. Bull, 15, 55-60.
  • Benavides, M.P. Gallego, S.M. Tomaro, M.L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology,17, 21-34.
  • Chaoui, A., Mazhouidi, S., Ghorbal, M.H.,El Ferjani E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci., 127, 139-47.
  • Dogan, M., Bolat, I., Karakas, S., Dikilitas, M., Gutiérrez-Gamboa, G., & Kaya, O. (2022). Remediation of Cadmium Stress in Strawberry Plants Using Humic Acid and Silicon Applications. Life, 12(12), 1962.
  • El Dakak, R.A. Hassan, I.A. (2020) The Alleviative Effects of Salicylic Acid on Physiological Indices and Defense Mechanisms of Maize (Zea Mays L. Giza 2) Stressed with Cadmium Environmental Processes 7:873–884
  • Gallego, S.M. Benavioes, M.P. Tomaro, M.L. (1996). Effect of heavy metal ions on sunflower leaves evidence for involvement of oxidative stress. Plant Sci., 121, 151-159.
  • Gong, Y. Toivonen P.M.A. Lau O.L. and Wiersma PA. (2001). Antioxidant system level in ‘Braeburn’ apple in related to its browing disorder. Bot. Bull. Acad. Sin.,42, 259-264.
  • Gratao, L.P., Polle, A., Lea, P., and Azevedo, A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32, 481-494.
  • Guo, B. Liang, YC. Zhu, YG. Zhao, FJ. (2007a). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ.Pollut., 147, 743-9.
  • Guo, B. Liang, Y. Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense systems, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J. Plant Physiol, 166, 20-31.
  • Hayat, S. and Ahmad, A. (2007). Salicylic Acid: A Plant Hormone. Published by springer. Dordrecht, The Netherlands pp. 396.
  • He, Y.L. Liu, Y.L. Chen, Q. Bian, A.H. (2002). Thermotolerance related to antioxidation induced by salicylic acid and heat hardening in tall fescue seedlings. J. Plant Physiol. Mol. Biol, 28, 89-95
  • Heath, R.L. Packer, L. (1968). Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 25, 189-198.
  • Hon, W-C. Griffith M. Chong P. Yang D.S.C. (1994). Extraction and isolation of antifreeze protein from winter rye (Secale cereale L.) leaves. Plant Physiol, 104, 971-980.
  • Kapahi, M. Sachdeva, S. (2019). Bioremediation Options for Heavy Metal Pollution. Journal of Health and Pollution 9 (24).
  • Krantev, A. Yordanova, R. Janda, T. Szalai, G. Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol. 165, 920–931.
  • Mba, F.O. Zhi-Ting, X., and Hai-Jie, Q. (2007). Salicylic acid alleviates the cadmium toxicity in Chinese cabbages (Brassica chinenesis). Pakistan Journal of Biological Sciences 10 (18), 3065-3071.
  • Mohy El-Din, S.M. Abdel-Kareem, M.S. (2020). Effects of Copper and Cadmium on the Protein Profile and DNA Pattern of Marine Microalgae Chlorella salina and Nannochloropsis salina. Environmental Processes. 7:189–205.
  • Mukherjee, S.P. Choudhuri, M.A. (1983). Implications of water stres-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 58, 166-170.
  • Panda, S.K. Patra, H.K. (2007). Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol. Plant. 29, 567–575
  • Pereira, L.M., Karpouzoglou, T., Frantzeskaki,N., Olsson,P. (2018). Designing transformative spaces for sustainability in social-ecological systems. Ecology and Society, 23 (4).
  • Popova, L.P. Maslenkova, L.T. Yordanova, R.Y. Ivanova, A.P. Krantev, A.P. Szalai, G. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem, 47, 224-31.
  • Sakhabutdinova, A.R. Fatkhutdinova, D.R. and Shakirova, F.M. (2004). Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of slination. Applied Biochemistry and Microbiology, 40(5), 501-505.
  • Sandalio, L.M. Dalurzo, H.C. Gomez, M. Romero-Puertas, M.C. del Rio, L.A. (2001). Cadmium induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115-2126.
  • Schützendübel, A. Schwanz, P. Teichmann, T. Gross, K. Langenfeld-Heyser, R., Godbold, D.L. Polle, A. (2001). Cadmium-induced changes in antioxidants systems, hydrogen peroxide content and differentiation in Scots pine roots. Plant Physiology, 127, 887-898.
  • Senaratna, T. Touchell, D. Burn, E. Dixon, K. (2000). Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul., 30, 157-161.
  • Taşğın, E. Atıcı, Ö. and Nalbantoğlu, B. (2003). Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation, 41, 231-236.
  • Toppi, L.S.D. Gabrielli, R. (1999). Response to cadmium in higher plants. Environ. Exp. Bot., 41, 105-30.
  • Tiryaki, D. Aydın, İ. Atıcı, A. (2019). Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 86, 111-119.
  • Vitoria, A.P. Lea, P.J. Azevedo, R.A. (2001). Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, 57, 701-710.
  • Xu, J. Yin, H.X. Li, X. (2009). Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep., 28, 325-33.