Rapor Edilmeyen Sızıntıların Yönetiminde Aktif Kaçak Kontrolünün Planlanması ve Sahada Uygulanması

Dağıtım sistemlerinde sızıntıların önemli bir kısmını yüzeye çıkmayan arızalar oluşturmaktadır. Bu çalışmada yüzeye çıkmayan arızaların yönetilmesi ve azaltılmasında aktif kaçak kontrolü metodolojisi önerilmiş ve sahada uygulanarak sonuçlar tartışılmıştır. Bu kapsamda Malatya ili merkez dağıtım sisteminde pilot uygulama gerçekleştirilmiştir. Bir idarede bu metodolojinin uygulanması ve sistemin işletmeye alınması için çeşitli veri tabanları geliştirilmiş ve yol haritaları önerilmiştir. Sahada yapılan çalışmalarda 3 pilot izole bölgede minimum gece debileri izlenmiş, potansiyel önlenebilir sızıntılar hesaplanmış ve akustik yöntemlerle yeri belirlenmiştir. Bu çalışmalar sonucunda 3 pilot bölgede toplam 38 adet yüzeye çıkmayan sızıntı noktası belirlenmiş, onarılmış ve bunun sonucunda 3 bölgede toplamda 35 l/s debi sisteme kazandırılmıştır. Bu debinin azaltılmasıyla sırasıyla 3023 m3/gün, 90720 m3/ay ve 1088640 m3/yıl hacim sisteme kazandırılmıştır. Aktif kaçak kontrolünün uygulanması ile önemli oranda su verimliliği sağlanmıştır. Özellikle terfili sistemlerde bu hacimlerin önlenmesi ile enerji tüketimleri de azaltılmış olacaktır. Sonuç olarak bu çalışmadan elde edilen çıktıların özellikle uygulayıcılar için önemli referans oluşturacağı düşünülmektedir.

Planning and Implementation of Active Leakage Control in the Management of Unreported Leakages

A significant part of the leaks in distribution systems consist of the unreported failures. In this study, active leak control methodology is proposed in the management and reduction of non-surface failures and the results are discussed by applying it in the field. In this context, a pilot application was carried out in the central distribution system of Malatya province. Various databases have been developed and roadmaps have been proposed for the implementation of this methodology in an administration. During the field studies, minimum night flow rates were monitored in 3 pilot isolated areas, potential recoverable leaks were calculated and their location was determined by acoustic methods. As a result of these studies, a total of 38 unreported leak points were identified and repaired in 3 pilot regions, and as a result, a total of 35 l/s flow rate was saved to the system in 3 regions. By reducing this flow, 3023 m3/day, 90720 m3/month and 1088640 m3/year volumes were added to the system, respectively. The implementation of active leakage control has resulted in significant water efficiency. By preventing these volumes, especially in pumped systems, energy consumption will be reduced. As a result, it is thought that the outputs obtained from this study will constitute an important reference especially for practitioners.

___

  • AL-Washali T., Sharma S., AL-Nozaily F., Haidera M., Kennedy M., (2018), Modelling the leakage rate and reduction using minimum night flow analysis in an intermittent supply system, Water, 11(1), 48, doi: 10.3390/w11010048.
  • Azevedo B.B., Saurin T.A., (2018), Losses in Water Distribution Systems: A Complexity Theory Perspective. Water Resources Management, 32, 2919–2936.
  • Boztaş F., Ödemir Ö., Durmuşçelebi F.M., Firat M., (2019), Analyzing the effect of the unreported leakages in service connections of water distribution networks on non‑revenue water, International Journal of Environmental Science and Technology, 16, 4393–4406.
  • Creaco E., Campisano A., Fontana N., Marini G., Page P.R., Walski T., (2019), Real time control of water distribution networks: A state-of-the-art review, Water Research, 161, 517–530.
  • Choi T., Mijin H., Jinkeun K., Jayong K., (2015), Efficient Minimum Night Flow Analysis Using Bayesian Inference, Journal of Water Supply: Research and Technology-Aqua, 64(1), 10-18.
  • Eggimann S., Lena M., Omar W., Mariane Y.S., Dorothee S., Matthew M.D.V., Philipp B., Max M., (2017), The Potential of Knowing More: A Review of Data-Driven Urban Water Management, Environmental Science and Technology, 51(5), 2538–2553.
  • Eugine M., (2017), Predictive Leakage Estimation Using the Cumulative Minimum Night Flow Approach, American Journal of Water Resources, 5(1), 1-4, doi: 10.12691/ajwr-5-1-1.
  • Farley M.G., Wyeth Z.B.M., Ghazali A., Sigh S., (2008), The Manager’s Non-Revenue Water Handbook. A Guide to Understanding Water Losses, Ranhill Utilities Bernhad and USAID, Malaysia, ss.98.
  • Farah, E., Isam S., (2017), Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow, Water Resources Management, 31, 4821–4833.
  • Fırat M., Orhan C., Yılmaz S., (2021a), Su İdarelerinin Su Kayıp Yönetim Performansının Analizi ve Temel Performans Gösterge Hesaplama Aracının Geliştirilmesi, Doğal Afetler ve Çevre Dergisi, 7(1), 75-88.
  • Fırat M., Yılmaz S., Ateş A., Özdemir Ö., (2021b), Determination of Economic Leakage Level with Optimization Algorithm in Water Distribution Systems, Water Economics and Policy, 7(3), 2150014, doi: 10.1142/S2382624X21500144.
  • García V.J., Cabrera E., Enrique Cabrera J. (2006), The Minimum Night Flow Method Revisited, In 8th Annual Water Distribution Systems Analysis Symposium, ASCE, Cincinnati, Ohio, USA, ss.1-18, doi: 10.1061/40941(247)35.
  • Gomes R., Alfeu S.A., Joaquim S., (2013), District Metered Areas Design Under Different Decision Makers’ Options: Cost Analysis, Water Resources Management, 27(13), 4527–4543.
  • Gupta A., Kulat K.D., (2018), A Selective Literature Review on Leak Management Techniques for Water Distribution System, Water Resources Management, 32 (10), 3247–3269.
  • Güngör M., Yarar U., Cantürk Ü., Firat, M., (2019), Increasing performance of water distribution network by using pressure management and database integration, Journal of Pipeline Systems Engineering and Practice, 10(2), 1–8, doi: 10.1061/(ASCE)PS.1949-1204.0000367.
  • Jadhao R.D., Gupta R., (2018), Calibration of Water Distribution Network of the Ramnagar Zone in Nagpur City Using Online Pressure and Flow Data, Applied Water Science, 8, 29, doi: 10.1007/s13201-018-0672-3.
  • Lambert A.O., Brown T.G., Takizawa, M., Weimer D., (1999), A Review of Performance Indicators for Real Losses from Water Supply Systems, Journal of Water Supply: Research and Technology – Aqua, 48(6), 227–237.
  • Lima, G.M., Brentan, B.M., Luvizotto Jr., E., (2018), Optimal Design of Water Supply Networks Using an Energy Recovery Approach, Renewable Energy, 117, 404-413.
  • Lipiwattanakarn S., Kaewsang S., Pornprommin A., Wongwiset, T., (2019), Real benefits of leak repair and increasing the number of inlets to energy, Water Science&Technology, 14(3), 714–725.
  • MASKİ, (2021), İçme suyu dairesi yıllık işletme raporu, Malatya Su ve Kanalizasyon İdaresi Genel Müdürlüğü, Malatya.
  • Mutikanga H., Sharma S., Vairavamoorthy K., Cabrera E., (2010), Using Performance Indicators as a Water Loss Management Tool in Developing Countries, Journal of Water Supply: Research and Technology – Aqua, 59(8), 471-481.
  • Pearson D., (2019), Standard Definitions for Water Losses: A Compendium of Terms and Acronyms and Their Associated Definition in Common use in the Field of Water Loss Management, IWA Publishing, London, UK, ss.80.
  • Roshani E., Filion Y., (2014), WDS Leakage Management through Pressure Control and Pipes Rehabilitation Using an Optimization Approach, Procedia Engineering, 89, 21–28.
  • Yılmaz S., Fırat M., Ateş A., Özdemir Ö., (2021), Analysis of Economic Leakage Level and Infrastructure Leakage Index Indicator by Applying Active Leakage Control, ASCE's Journal of Pipeline Systems - Engineering and Practice, 12(4), 04021046, doi: 10.1061/(ASCE)PS.1949-1204.0000583.