Bir Hastanede İç Hava Kalitesinin Araştırılması: Şanlıurfa’dan Örnek Bir Çalışma

Çoğu insan zamanlarının %80’ninden fazlasını iç ortamlarda geçirmektedir. Hastaneler, Türkiye'de önemli bir kamusal alandır. İnsanların hastanelere diğer kamusal alanlardan çok daha fazla gitmesi hastaneleri önemli bir kurum haline getirmektedir. Bu çalışmada, Türkiye’nin Şanlıurfa ilinde en çok hasta bakan hastanenin polikliniklerinde iç hava kalitesi araştırılmıştır. İç hava kalitesini belirleyen partikül madde (PM), CO, CO2, sıcaklık ve bağıl nem iç hava kalitesini belirleyen parametreler olarak değerlendirilmiştir. Ölçülen değerler WHO, ASHAE gibi uluslararası standartlarla karşılaştırıldığında PM2.5 ve PM10 konsantrasyonun her ikisinin de yüksek değerlerde olduğu poliklinikler sırasıyla genel cerrahi, üroloji, nöroloji, kalp servisi ve göz hastalıkları olarak belirlenmiştir. CO2 insanlar tarafından solunum yoluyla yayılan bir iç hava kirleticisidir. Bu araştırmada CO2 seviyesinin radyoloji, tomografi, röntgen, ortopedi polikliniği ve acil serviste ASHAE standartlarının altında olduğu bulunmuşken diğer polikliniklerde standartın üstünde ölçülmüştür. Sıcaklık ve bağıl nem değerleri tüm polikliniklerde standartlara uygun olmadığı, CO değerinin tüm polikliniklerde düşük olup standartları sağlamakta olduğu saptanmıştır. Yetersiz havalandırma, eksik temizlik, alçak tavan ve hasta sayısındaki fazlalık polikliniklerde standartların üzerinde değerlere sebep olan ana etmenler arasında olduğu düşünülmektedir. Eski yapılı hastanelerde, toz partikülleri, CO2, sıcaklık ve bağıl nem polikliniklerde çalışanların ve hastaların sağlığı için risk oluşturabileceği saptanmıştır.

Investigation of Indoor Air Quality in a Hospital: A Case Study from Şanlıurfa, Turkey

Most people spent more than %80 of their time indoors. In Turkey, hospitals are prominent governmental places. Its importancebecomes from more visits than others. An investigation about the interior air quality across the polyclinics of one of the most visitedhospital of Şanlıurfa, Turkey, was conducted in this study. Indoor air quality in terms of PM, CO, CO2, temperature and relativehumidity was investigated. The performed measurements were revealed that the levels of PM2.5 and PM10 in surgery, urology,neurology, heart surgeon and eye diseases polyclinic were higher than the threshold limits in international standards set by WHOand ASHAE. CO2, a surrogate for indoor pollutants emitted by humans. In this research, CO2 was found to be under the standards inradiology, tomography, X-ray, orthopedics polyclinics and emergency services. Conversely, it was measured above the standardsacross the other polyclinics. Temperature and relative humidity were found unsuitable; CO was found to meet the standards. Thesignificantly high rates were considered as a result of inadequate ventilation, lack of proper cleaning, low ceiling and crowd of patients.The old age of the building could create risk of dust particles, CO2, temperature, humidity in the hospital for the health of the staff andpatients visiting the polyclinics.

___

  • Araújo M.B., Alagador D., Cabeza M., Nogués‐Bravo D., Thuiller W., (2011), Climate change threatens European conservation areas, Ecology Letters, 14(5), 484-492.
  • ASHRAE, (2001), The ASHRAE Handbook 2001: Fundamentals, Chapter 8: Thermal Comfort, Atlanta, USA, 544ss.
  • Beelen R.G., Hoek G., van den Brandt P.A., Goldbohm R.A., Fischer P., Schouten L.J., Jerrett M., Hughes E., Armstrong B., Brunekreef B., (2008), Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR Study), Environmental Health Perspectives, 116(2), 196–202.
  • Bruce N., Perez-Padilla R., Albalak R., (2000), Indoor air pollution in developing countries: amajor environmental and public health challenge, Bulletin of the World Health Organization, 78(9), 1078-1092.
  • Chaloulakou A., Mavroidis I., Duci A., (2003), Indoor and outdoor carbon monoxide concentration relationships at different microenvironments in the Athens area, Chemosphere, 52(6), 1007-1019.
  • Chamseddine A., El-Fadel M., (2015), Exposure to air pollutants in hospitals: indoor–outdoor correlations, Sustainable Development, 2, 707-716.
  • Chang T., Ren D., Shen Z., Huang Y., Sun J., Cao J., Pan H., (2017), Indoor air pollution levels in decorated residences and public places over Xi’an China, Aerosol and Air Quality Research, 17, 2197-2205.
  • Chen C., Zhao B., (2011), Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor, Atmospheric Environment, 45(2), 275–288.
  • Ciuzas D., Prasauskas T., Krugly E., Jurelionis A., Seduikyte L., Martuzevicius D., (2016), Indoor air quality management by combined ventilation and air cleaning: An experimental study, Aerosol and Air Quality Research, 16, 2550–2559.
  • Doğan H., (2002), Havalandırma ve İklimlendirme Esasları, Seçkin Yayınevi, Ankara, 231ss.
  • Erdoğan M.S., Yurtseven E., Erginöz E., Vehid S., Köksal S., Yüceokur A.A., (2010), Total Volatile Organic Compounds (TVOC), Carbon Monoxide (Co), Carbon Dioxide (CO2) Concentrations In The Hospital Building of A Medical Faculty In Istanbul, Turkey, Nobel Medicus 2010, 6(3), 66-72.
  • Halios C.H., Helmis C.G., Deligianni K., Vratolis S., Eleftheriadis K., (2013), Determining the ventilation and aerosol deposition rates from routine indoor-air measurements, Environ. Monit. Assess., 186(1), 151–163.
  • Işık E., Çibuk S., (2015), Yemekhaneler ve kantinlerde iç hava kalitesi ile ilgili ölçüm sonuçları ve analizi - Tunceli Üniversitesi örneği, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 6(1), 39-50.
  • Jovanović M., Vučićević B., Turanjanin V., Živković M., Spasojević V., (2014), Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia, Energy, 77, 42–48.
  • Jung C.C., Wu P.C., Tseng C.H., Su H.J., (2015), Indoor air quality varies with ventilation types and working areas in hospitals, Building and Environment, 85, 190-195.
  • Kim K.H., Kabir E., Kabir S., (2015), A review on the human health impact of airborne particulate matter, Environment International, 74, 136-143.
  • Leung M., Chan A.H.S., (2006), Control and management of hospital indoor air quality, Medical Science Monitor., 12(3), SR17-23.
  • Li R., Fu H., Hu Q., Li C., Zhang L., Chen J., Mellouki A.W., (2017), Physiochemical characteristics of aerosol particles in the typical microenvironment of hospital in Shanghai, China, Science of The Total Environment, 580, 651-659.
  • Lu C.Y., Lin J.M., Chen Y.Y., Chen Y.C., (2015), Building-related symptoms among office employees associated with indoor carbon dioxide and total volatile organic compounds, Int. J. Environ Res Public Health., 12(6), 5833–5845.
  • Lu C.Y., Kang S.Y., Liu S.H., Mai C.W., Tseng C.H., (2016), Controlling Indoor Air Pollution from Moxibustion, International Journal of Environmental Research and Public Health, 13(6), E612.
  • Lu C.Y., Ma Y.C., Lin J.M., Chuang C.Y., Sung F.C., (2007a), Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine and indoor air pollution among non-smoking office employees, Environmental Research, 103(3), 331–337.
  • Lu C.Y., Ma Y.C., Lin J.M., Li C.Y., Lin R.S., Sung F.C., (2007b), Oxidative stress associated with indoor air pollution and sick building syndrome-related symptoms among office workers in Taiwan, Inhalation Toxicology, 19(1), 57–65.
  • McClellan R.O., (2000), Particle interactions with the respiratory tract, In: Particle–Lung Interactions, (Ed.), Peter G., and Heyder J., CRC Press, New York, USA, 823ss.
  • Morman S.A., Plumlee G.S., (2013), The role of airborne mineral dusts in human disease, Aeolian Research, 9, 203-212.
  • Oliver L.C., Shackleton B.W., (1998), The indoor air we breathe, Public Health Reports,113(5), 398-409.
  • Pope III C.A., Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., Thurston G.D., (2002), Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Journal of the American Medical Association, 287(9), 1132–1141.
  • Recknagel-Sprenger S., (2003), Isıtma ve Klima Tekniği El Kitabı 97/98, TTMD, İstanbul.
  • Riediker M., Cascio W.E., Griggs T.R., Herbst M.C., Bromberg P.A., Neas L., Williams R.W., Devlin R.B., (2004), Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men, American Journal of Respiratory and Critical Care Medicine, 169(8), 934-940.
  • Seppänen O.A., Fisk W.J., Mendell M.J., (1999), Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings, Indoor Air., 9(4), 226-252.
  • Shy C.G., Hsu Y.C., Shih S.I., Chuang K.P., Lin C.W., Wu C.W., Chuang C.Y., Chao H.R., (2015), Indoor level of polybrominated diphenyl ethers in the home environment and assessment of human health risks, Aerosol and Air Quality Research, 15(4), 1494– 1505.
  • Stephen E., Mbuligwe G., Kassenga R., (1997), Automobile air pollution in Dar es Salaam City, Tanzania, Science of the total Environment, 199(3), 227-235.
  • Vilcekova S., Meciarova L., Burdov E. K., Katunska J., Kosicanova D., Doroudiani S., (2017), Indoor environmental quality of classrooms and occupants' comfort in a special education school in Slovak Republic, Building and Environment, 120, 29-40.
  • Wang X., Bi X., Sheng G., Fu J., (2006), Hospital indoor PM10/PM2. 5 and associated trace elements in Guangzhou, China, Science of the Total Environment, 366(1), 124-135.
  • WHO, (2000), Air Quality Guidelines for Europe, Second Edition, WHO Regional Publications European Series No. 91, http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf, [Access 27 July 2018].
  • Yang Y., (2017), Numerical study of the particle penetration coefficient of multibended building crack, Aerosol and Air Quality Research, 17(1), 290–301.
  • Zhang X.Y., Wang Y.Q., Zhang X.C., Guo W., Gong S.L., (2008), Carbonaceous aerosol composition over various regions of China during 2006, Journal of Geophysical Research, 113:D14111, 1-10.