Sentinel-1 Uydusu ile Konya Karapınar İlçesi Bölgesel Çökme Analizi

Bölgesel çökme, yatay hareketle veya hiç hareket olmadan zemin yüzeyinin ani çökmesi veya kademeli olarak aşağıya doğru yerleşmesi olarak tanımlanmaktadır. Zemin çöküşü dünya çapında bir sorun olmasıyla birlikte Türkiye’de, özellikle İç Anadolu Bölgesi’nde sıkça görülmektedir. Günümüzde bölgesel çökmenin belirlenmesinde, uzaktan algılama ve coğrafi bilgi sistemlerinin yanında uydu teknolojileri de kullanılmaktadır. Sentinel-1 uydusu’nun C-band Sentetik Açıklık Radarı (SAR) tarafından sağlanan görüntüler, yüzeyde oluşan çökmeleri ve yapısal hasarı izlemenin en iyi yoludur. Bu çalışmada, Konya ilinin 06/05/2019 ile 24/05/2020 tarihleri arasındaki diferansiyel sentetik açıklık radar interferometrisi (DInSAR) verileri kullanılarak çökme analizi yapılmıştır. Çalışma sonucunda Konya ili Karapınar ilçelesinde çökme potansiyelinin olduğu ve bölgesel çökmenin çoğunlukla 5-10 cm/yıl olduğu belirlenmiştir. Ayrıca, bu değerin Karapınar ilçesinde maksimum 16 cm/yıl’a ulaşabileceği görülmüştür.

Regional Subsidence Analysis of Konya Karapınar District with Sentinel-1 Satellite

Land subsidence is defined as sudden collapse of the ground surface or gradual downward placement with or without horizontal movement. Although land subsidence is a global problem, it is frequently seen in Turkey, especially in the Central Anatolia Region. Today, in the determination of regional collapse, satellite technology is used in addition to remote sensing and geographical information systems. The images provided by the Sentinel-1 satellite C-band synthetic aperture radar (SAR) are the best way to monitor land subsidence and structural damage. In this study, subsidence analysis of SNAP (Sentinel Application Platform) software was performed by using Differential Interferometric Synthetic Aperture Radar (DInSAR) data of Konya city between 06/05/2019 and 24/05/2020. It was determined that there is a potential for collapse in the district of Karapınar and regional collapse is mostly seen as 5-10 cm/year. In addition, it was observed that this value reached a maximum of 16 cm/year in the Karapınar district.

___

  • Du, Z., Ge, L., & Ng, A. H. M. (2018, July). Investigation on the Correlation Between the Subsidence Pattern and Land Use in Bandung, Indonesia with Both Sentinel-1/2 and ALOS-2 Satellite Images. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 4467-4470). IEEE.
  • EARTHDATA, https://www.asf.alaska.edu/sar-data-sets/insar/ [Erişim tarihi: 2016]
  • Edalat, A., Khodaparast, M., & Rajabi, A. M. (2019). Detecting Land Subsidence Due to Groundwater Withdrawal in Aliabad Plain, Iran, Using ESA Sentinel-1 Satellite Data. Natural Resources Research, 1-16.
  • ESA, https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload [Erişim tarihi: 2015]
  • Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States (Vol. 1182). US Geological Survey.
  • GHARECHELOU, S. (2015). Soil moisture retrieval using synthetic aperture radar (SAR) data (Doctoral dissertation, 千葉大学).
  • Hsieh, C. S., Shih, T. Y., Hu, J. C., Tung, H., Huang, M. H., & Angelier, J. (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural hazards, 58(3), 1311-1332.
  • Hu, L., Dai, K., Xing, C., Li, Z., Tomás, R., Clark, B., ... & Lu, Y. (2019). Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. International Journal of Applied Earth Observation and Geoinformation, 82, 101886.
  • Hürriyet, http://www.hurriyet.com.tr/gundem/konyada-30-yer-coktu-10967526 [Erişim tarihi: 2009]
  • Milliyet, http://www.milliyet.com.tr/gundem/konyada-tarla-coktu-yeni-dev-obruk-olustu-2299858 [Erişim tarihi: 2016]
  • Sowter, A., Amat, M. B. C., Cigna, F., Marsh, S., Athab, A., & Alshammari, L. (2016). Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. International journal of applied earth observation and geoinformation, 52, 230-242.
  • Southern Mongolion Human Rigths Information Center, https://www.smhric.org/news_455.htm [Erişim tarihi: 2002]
  • Suganthi, S., Elango, L., & Subramanian, S. K. (2017). Microwave D-InSAR technique for assessment of land subsidence in Kolkata city, India. Arabian Journal of Geosciences, 10(21), 458.
  • Üstün, A., Tuşat, E., Yalvaç, S., Özkan, İ., Eren, Y., Özdemir, A., ... & Doğanalp, S. (2015). Land subsidence in Konya Closed Basin and its spatio-temporal detection by GPS and DInSAR. Environmental earth sciences, 73(10), 6691-6703. Xue, Y. Q., Zhang, Y., Ye, S. J., Wu, J. C., & Li, Q. F. (2005). Land subsidence in China. Environmental geology, 48(6), 713-720.
  • Ye, S., Xue, Y., Wu, J., Yan, X., & Yu, J. (2016). Progression and mitigation of land subsidence in China. Hydrogeology Journal, 24(3), 685-693.
  • Zhou, H., Wang, Y., Yan, S., Li, Y., Liu, X., & Zhang, F. (2018). Monitoring of recent ground surface subsidence in the Cangzhou region by the use of the InSAR time-series technique with multi-orbit Sentinel-1 TOPS imagery. International journal of remote sensing, 39(22), 8113-8128.
  • Zhou, L., Guo, J., Hu, J., Li, J., Xu, Y., Pan, Y., & Shi, M. (2017). Wuhan surface subsidence analysis in 2015–2016 based on sentinel-1a data by SBAS-inSAR. Remote Sensing, 9(10), 982.