Geoteknik Mühendisliğinde 2016-2021 Yılları Arası Sıvılaşma Çalışmaları

Liquefaction Studies In Geotechnical Engineering Between 2016-2021

Deprem kaynaklı olarak gerçekleşen sıvılaşma olayı, geoteknik mühendisliğinin en önemli konularından biridir. Bu olay, depreme maruz kalan suya doygun, gevşek, kohezyonsuz zeminlerin artan boşluk suyu basıncından dolayı ani kayma mukavemeti kaybı yaşaması olarak özetlenebilir. Devirsel kayma gerilmelerinin etkisi ile aşırı boşluk suyu basıncı oluşmakta, zemin taneleri arasındaki bağın kaybolması ile zemin sıvı gibi davranmakta ve taşıma gücü kaybı yaşanmaktadır. Yapılar için, temel altı zeminde taşıma gücü kaybı yaşanması ağır neticeler doğurmaktadır. İlk kez Arthur Casagrande tarafından ortaya konulan sıvılaşma olgusu ile alakalı günümüzde hala araştırmalar devam etmektedir. Zeminlerin sıvılaşma potansiyelinin laboratuvar ve arazi testleri ile belirlenmesi, sıvılaşmaya karşı direncin arttırılması ve 3D modelleme çalışmalarına sıklıkla karşılaşılmaktadır. Bu çalışmada, geoteknik mühendisliği için büyük önem arz eden sıvılaşma konusu ile ilgili son beş yılda (2016-2021) yapılmış olan deneysel çalışmaların ve yeni yöntemlerin tanıtılması amaçlanmıştır.

___

  • Abdallah K., Abdelkader B., Ahmed A., Eddine B.D., Marwan S. (2021) A laboratory study of shear strength of partially saturated sandy soil. Geomechanics and Geoengineering, https://doi.org/10.1080/17486025.2020.1864034.
  • Amanta A.S., Dasaka S.M. (2021) Air injection method as a liquefaction countermeasure for saturated granular soils. Transportation Geotechnics, 30, 100622, https://doi.org/10.1016/j.trgeo.2021.100622.
  • Arab A., Belkhatir M., Sadek M. (2016) Saturation Effect on Behaviour of Sandy Soil Under Monotonic and Cyclic Loading: A Laboratory Investigation. Geotechnical and Geological Engineering, 34: 347-358, https://doi.org/10.1007/s10706-015-9949-6.
  • Asadi M.S., Asadi M. B., Orense R. P., Pender M. J. (2018) Undrained Cyclic Behavior of Reconstituted Natural Pumiceous Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(8), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001912.
  • Azeiteiro J.N.R., Coelho P. A. L. F., Taborda D. M.G., Grazina J. C.D. (2017) Energy-based evaluation of liquefaction potential under non-uniform cyclic loading, Soil Dynamics and Earthquake Engineering, 92, 650-665, https://doi.org/10.1016/j.soildyn.2016.11.005.
  • Bai Y., Liu J., Song Z., Bu F., Qi C., Qian W. (2019) Effects of Polypropylene Fiber on the Liquefaction Resistance of Saturated Sand in Ring Shear Tests. Applied Sciences, 9(19):4078, https://doi.org/10.3390/app9194078.
  • Beena K.S., Jayakrishnan V., Alex A., Bindu C.S. (2021) Analysis of Liquefaction Potential of Coastal Sands Using Laminar Box System. Indian Geotech J 51, 1209–1224, https://doi.org/10.1007/s40098-021-00503-0.
  • Chang M.H. Chen J.W., Lee W.F. (2017) Post-liquefaction volumetric strain behavior of non-plastic silty sand - A case study of Hsin-Hwa liquefaction. Journal of Applied Science and Engineering, 20(1), 63-72, https://doi.org/10.6180/jase.2017.20.1.08.
  • Ciardi G., Bardotti R., Vannucchi G. and Madiai C. (2020) Effects of high-diluted colloidal silica grouting on the behaviour of liquefiable sand. Geotechnical Research 7(4): 193–208, https://doi.org/10.1680/jgere.20.00010.
  • Du S., Chian C. S., Qin C. (2019) Post-liquefaction Pore Pressure Dissipation in Sand under Cyclic Stress Triaxial Testing. Géotechnique, 70(2), 1-42, https://doi.org/10.1680/jgeot.17.p.205.
  • Feng K. and Montoya B.M. (2017) Quantifying Level of Microbial-Induced Cementation for Cyclically Loaded Sand. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
  • Güler E., Savaş H., Afacan K.B. (2021). Effect of permeability on liquefaction potential of silty sands. Arabian Journal of Geosciences, 14:1410, 2-9, https://doi.org/10.1007/s12517-021-07822-9.
  • He J., Gao Y., Gu Z., Chu J., Wang L. (2020) Characterization of Crude Bacterial Urease for CaCO3 Precipitation and Cementation of Silty Sand. Journal of Materials in Civil Engineering, 32(5), https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.
  • Iwai H., Ni X., Ye B., Nishimura N., Zhang F. (2020) A new evaluation index for reliquefaction resistance of Toyoura sand. Soil Dynamics and Earthquake Engineering, 136: 106206, https://doi.org/10.1016/j.soildyn.2020.106206.
  • Keishing J., Huang X., Hanley K. (2020) Energy dissipation in soil samples during cyclic triaxial simulations. Computers and Geotechnics, 121: 103481, https://doi.org/10.1016/j.compgeo. 2020.103481.
  • Keramatikerman M., Chegenizadeh A., Nikraz H., Sabbar A.S. (2018) Effect of flyash on liquefaction behaviour of sand-bentonite mixture. Soils and Foundations, 58(5), 1288-1296, https://doi.org/10.1016/j.sandf.2018.07.004.
  • Kramer S.L. (2003). Geoteknik Deprem Mühendisliği. (Çev. K. Kayabalı). Ankara: Gazi Kitapevi. (Orijinal yayın tarihi, 1996)
  • Li B., Huang M. and Zeng X. (2016) Dynamic Behavior and Liquefaction Analysis of Recycled-Rubber Sand Mixtures. Journal of Materials in Civil Engineering, 28(11), https://doi.org/10.1061/(ASCE)MT.1943-5533.0001629.
  • Licata V., D'Onofrio A., Silvestri F. (2018) Microstructural factors affecting the static and the cyclic resistance of a pyroclastic silty sand. Géotechnique, 68(5), 434-441, https://doi.org/10.1680/jgeot.16.P.319.
  • Mase L. Z., Likitlersuang S., Tobita T. (2019) Cyclic behaviour and liquefaction resistance of Izumio sands in Osaka, Japan. Marine Georesources & Geotechnology, 37(7), 765-774, https://doi.org/10.1080/1064119X.2018.1485793.
  • Mele L., Tian J.T., Lirer S., Flora A., Koseki J. (2018) Liquefaction resistance of unsaturated sands: Experimental evidence and theoretical interpretation. Géotechnique, 69. 1-44, https://doi.org/10.1680/jgeot.18.P.042.
  • Mollamahmutoğlu M. ve Babuşcu F. (2006). Zeminlerde Sıvılaşma Analiz ve İyileştirme Yöntemleri. Ankara: Gazi Kitapevi.
  • Morimoto T., Aoyagi Y., Koseki J. (2019) Effects of small and large shear histories on multiple liquefaction properties of sand with initial static shear. Soils and Foundations, 59,2024-2035, https://doi.org/10.1016/j.sandf.2019.11.001.
  • Noorzad R., Shakeri M. (2017) Effect of silt on post - cyclic shear strength of sand. Soil Dynamics and Earthquake Engineering, 97, 133-142, https://doi.org/10.1016/j.soildyn.2017.03.013.
  • Onur M. (2018) Eskişehir Kohezyonlu Zeminlerinin Sıvılaşma Potansiyelinin Belirlenmesi. 2ND International Symposium on Natural Hazards and Disaster Management 04-06 May 2018. Sakarya, Turkey.
  • Simatupang M., Okamura M., Hayashi K., Yasuhara H. (2018) Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation. Soil Dynamics and Earthquake Engineering, 115, 710-718, https://doi.org/10.1016/j.soildyn.2018.09.027.
  • Smitha S. and Rangaswamy K. (2020) Effect of Biopolymer Treatment on Pore Pressure Response and Dynamic Properties of Silty Sand. Journal of Materials in Civil Engineering, 32(8), https://doi.org/10.1061/(ASCE)MT.1943-5533.0003285.
  • Sönmezer, Y. B. (2020) Siltli Kumlarda Gerilme Kontrollü ve Deformasyon Kontrollü Sıvılaşma Testlerinin Karşılaştırılması. El-Cezerî Fen ve Mühendislik Dergisi, 7(1), 322-337, https://doi.org/10.31202/ecjse.621605.
  • Umar M., Kiyota T., Chiaro G., Duttine A. (2021) Post-liquefaction deformation and strength characteristics of sand in torsional shear tests. Soils and Foundations, 61:5, 1207-1222, https://doi.org/10.1016/j.sandf.2021.06.009.
  • Wei X., Yang J., Zhou Y. G., Chen Y. (2020) Influence of particle-size disparity on cyclic liquefaction resistance of silty sands. Géotechnique Letters, 10(2), 155-161, https://doi.org/10.1680/jgele.19.00076.
  • Wu C., Kiyota T. (2019) Effects of specimen density and initial cyclic loading history on correlation between shear wave velocity and liquefaction resistance of Toyoura sand. Soils and Foundations, 59, 2324-2330 https://doi.org/10.1016/j.sandf.2019.03.018.
  • Yang Z. X., Pan K. (2018) Energy-Based Approach to Quantify Cyclic Resistance and Pore Pressure Generation in Anisotropically Consolidated Sand. Journal of Materials in Civil Engineering, 30(9), https://doi.org/10.1061/(ASCE)MT.1943-5533.0002419.
  • Ye B., Ni X., Ye G., Huang Y., Lu P. (2019) Prediction of the initial point of the last cycle in undrained cyclic triaxial tests on flow liquefaction. Soil Dynamics and Earthquake Engineering, 120, 12-22, https://doi.org/10.1016/j.soildyn.2019.01.028.
  • Zhang X. and Russell A.R. (2020) Assessing Liquefaction Resistance of Fiber-Reinforced Sand Using a New Pore Pressure Ratio. Journal of Geotechnical and Geoenvironmental Engineering, 146(1), https://doi.org/10.1061/(ASCE)GT.1943-5606.0002197.
  • Zhu M., Gong G., Xia J., Liu L., Wilkinson S. (2021) Effects of deviator strain histories on liquefaction of loose sand using DEM. Computers and Geotechnics, 136: 104213, https://doi.org/10.1016/j.compgeo.2021.104213.
  • Zhu Z., Zhang F., Peng Q., Dupla J.C., Canou J., Cumunel G., Foerster E. (2021) Effect of the loading frequency on the sand liquefaction behaviour in cyclic triaxial tests. Soil Dynamics and Earthquake Engineering, 147:106779, https://doi.org/10.1016/j.soildyn.2021.106779.
  • Zhuang H., Wang R., Chen G., Miao Y.,, Zhao K. (2018) Shear modulus reduction of saturated sand under large liquefaction - induced deformation in cyclic torsional shear tests. Engineering Geology,240,110-122, https://doi.org/10.1016/j.enggeo.2018.04.018.