Yüksek Fırın Cürufu Takviyeli Epoksi Kompozitin Kuru Kayma Davranışının İncelenmesi

Bu çalışmada yüksek fırın cürufu partiküllerinin epoksi matris içine katılarak oluşturulan polimer matrisli kompozitin aşınma dayanımına etkisi araştırılmıştır. Karşılaştırma yapmak amacıyla yüksek fırın cürufu takviyeli kompozit yanında Al2O3 katkılı epoksi matrisli kompozitler üretilmiştir. Takviye edici partikül olarak 61 μm, 91 μm ve 125 μm boyutunda yüksek fırın cürufu ve Al2O3 tozları, %30 oranında epoksi reçine içine karıştırılmıştır. Oda sıcaklığında 36 saat kürleme işlemine bırakılan numuneler ball-on disk aşınma cihazında aşınma işlemine tabi tutulmuştur. 10N, 15N ve 20N yükler altında 300 m aşınma işlemi uygulanan numunelerde yüksek fırın cürufu katkılı kompozitin Al2O3 katkılı kompozitle kıyaslanarak aşınma ve sürtünme davranışı incelenmiştir. Aşınma yüzeylerinde meydana gelen hacim kayıpları ve muhtemel aşınma mekanizmaları SEM mikroskobu ile incelenmiştir. Aşınma testleri sonucunda özellikle düşük yüklerde olmak üzere tüm yükler altında yüksek fırın cürufu takviyeli kompozitin aşınma kayıpları Al2O3‘e oranla daha düşük çıkmıştır. Artan yüke bağlı olarak kompozitlerin aşınma dayanımları arasındaki fark azalmıştır. Artan yüke bağlı olarak batıcı uçun numune üstünde oluşturduğu kuvvetlerin artması, tüm numunelerde aşınma hacim kayıplarını artırmıştır. Takviye edici partikül boyutunun artması matris-partikül tutunmasını zayıflattığı ve daha az alanda var olduğu için kompozitlerin aşınma dayanımında düşüşe sebep olmuştur. Yüksek fırın cürufu takviyeli kompozitlerde baskın aşınma türü olarak plastik deformasyon görülürken, Al2O3 takviyeli kompozitlerde yüzey altı yorulması aşınma mekanizması baskın olarak görülmüştür.

Investigation of Dry Sliding Behavior of Blast Furnace Slag Reinforced Epoxy Composite

Polymer matrix composites are advanced materials that can be used in a variety of applications such as low density, high strength, automobile, aerospace and home appliances. Common and commercially used composites generally use polymers as matrix materials and are commonly known as resin solutions. variety of polymer materials are available as matrix type and the commonly used matrix materials are epoxy, urethane, polyamide, polyester, polyether ether ketone (PEEK)… The reinforcement materials used are generally fibers, particles and ground minerals. Due to the increasing production of iron and steel, high levels of slag are emerging and pose problems for both producers and the environment. From this point of view, in this study, it has been investigated on the wear behavior of the epoxy matrix as a reinforcement in order to evaluate the blast furnace slag (BFS), which is known to have hard ceramic components. EP100 epoxy resin and EP385H hardener are commercially available. The epoxy resin was selected as matrix and Al2O3 and blast furnace slag dusts of 61 µm, 91 µm and 125 µm were used as reinforcement (Table 1). In the produced composites the reinforcement ratio was kept constant at 30% and the epoxy and reinforcement powders were mixed until a homogeneous mixture was obtained. The curing agent was added during the mixture and at the end of the process the mixture was poured into the silicone mold. The samples were then allowed to cure for 36 hours at room temperature. Dry sliding wear behavior of samples tested with ball on disc wear device. The wear resistance of the composites reinforced with blast furnace slag at all conditions was higher than the samples reinforced with Al2O3. However, the volume losses of composites reinforced with blast furnace slag especially at low loads are much lower than the samples reinforced with Al2O3. The reason for this; It can be shown that the blast furnace slag having a fragile structure is broken under high load and divided into many sharp edges and these particles contribute to abrasion by acting as abrasive material in front of the abrasive ball. The volume losses of the samples increased with increasing load. Because the two forces during wear affect the wear losses. One of them is the force acting on the counter-surface of the ball, while the other is the shear force. The increase of the load increased the penetration of abrasive ball to the opposite surface. Therefore, the amount of material to be affected during the relative movement of the abrasive ball is also increased. As a result, if sufficient shear force occurs, it transfers more mass from the ball to the surface. In both types of composite, increased reinforcement particle size resulted in increased wear losses. Low size reinforcement particles are more homogeneously distributed in the matrix at more points. In this case abrasive ball will be more difficult to penetrate into the matrix and will contribute more to the wear resistance of the low-dimensional particle reinforced composite material. In addition, low-dimensional particles will have more adhesion in the matrix. This will help reduce wear losses.  Both Al2O3 and blast furnace slag reinforced composites showed fatigue related surface deterioration and plastic deformation wear mechanisms. However, plastic deformation was the predominant wear mechanism in blast furnace slag reinforced composites, while Al2O3 reinforced composites were predominantly identified as a fatigue-related surface damage wear mechanism.

___

  • Bazrgari D., Moztarzadeh F., Sabbagh-Alvani A.A., Rasoulianboroujeni M., Tahriri M., Tayebi L., (2018). Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite, Ceramics International, 44, 1220–1224.
  • Hanumantharaya R, Vaishak N L, Suhas, Mahesh B Davanageri, Jaimon D Quadros, Premkumar B G, (2018). Mechanical and Tribological Wear Behavior of Epoxy Hybrid Composites, Materials Today: Proceedings, 5 7947–7953.
  • Kanchanomai C., Noraphaiphipaksa N., Mutoh Y., (2011). Wear characteristic of epoxy resin filled with crushed-silica particles, Composites: Part B, 42 1446–1452.Kranthi G., Satapathy A., (2010). Evaluation and prediction of wear response of pine wood dust filled epoxy composites using neural computation, Computational Materials Science, 49 609–614.
  • Kumar S. T., Shivashankar G. S., Dhotey K., Singh J., (2017). Experimental study wear rate of glass fibre reinforced epoxy polymer composites filled with aluminium powder, Materials Today: Proceedings, 4, 10764–10768.
  • Kurahatti R.V., Surendranathan A. O., Ramesh A.V. Kumar, Wadageri C. S., Auradi V., Kori S. A., (2014). Dry Sliding Wear behaviour of Epoxy reinforced with nano ZrO2 Particles, Procedia Materials Science, 5 274 – 280.
  • Lin Leyu, Alois K. S., (2018). The roles of rigid particles on the friction and wear behavior of short carbon fiber reinforced PBT hybrid materials in the absence of solid lubricants, Tribology International, 119 404–410.
  • Madhanagopal A., Gopalakannan S., (2018). Dry slide wear behavior of boron carbide filled epoxy composites, Materials Today: Proceedings 5, 7289–7295.Pattanaik A., Satpathy M. P., (2016). Subash Chandra Mishra, Dry sliding wear behavior of epoxy fly ash composite with Taguchi optimization, Engineering Science and Technology, an International Journal, 19, 710–716.
  • Shahapurkar K., Chavan V. B., Doddamani M., Mohan Kumar G.C., (2018). Influence of surface modification on wear behavior of fly ash cenosphere/epoxy syntactic foam, Wear, 414–415 327–340.
  • Shivamurthy B., Uday K. Bhat, S. (2013). Anandhan, Mechanical and sliding wear properties of multi-layered laminates from glass fabric/graphite/epoxy composites, Materials and Design, 44 136–143.
  • Sudarshan Rao K., Varadarajan Y. S., Rajendra N., (2015). Erosive wear behaviour of carbon fiber-reinforced epoxy composite, Materials Today: Proceedings, 2, 2975 – 2983.
  • Sudheer M., (2016). Evaluation of abrasive wear behavior of dual ceramic whisker reinforced epoxy composites, Materials Discovery 6, 17–27.
  • Suresha B., Siddaramaiah, Kishore, Seetharamu S., Sampath Kumaran P., (2009). Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites, Wear, 267 1405–1414.
  • Wu Y., Yu Z., Liu X., (2017). Tribological performance of in-situ epoxy composites filled with micro-sized ZrB2 particles, Composites Part B, 123, 148-153.
  • Xing X.S., Li R.K.Y., (2004). Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles, Wear, 256 21–26.