Öğretme-öğrenme esaslı optimizasyon yöntemi ile uzay kafes kule yapı sisteminin optimum boyutlandırılması

Bu çalışmada, son yıllarda geliştirilmiş öğretme-öğrenme esaslı optimizasyon yönteminin çelik uzay kafes sistemlerinin optimum boyutlandırılmasındaki başarısının araştırılması hedeflenmiştir ve bu bağlamda 942 elemanlı uzay çelik kafes kule problemi sayısal örnek olarak kullanılmıştır. Diğer bir çok stokastik algoritma yönteminde olduğu gibi öğretme-öğrenme esaslı optimizasyon yöntemi de çevremizdeki olayları taklit etmektedir. Bu algoritma yönteminde analiz işlemleri öğretmen ve öğrencilerinden oluşan bir sınıf ile yürütülmektedir. Sınıftaki her bir öğrenci bir yapı modelini temsil etmektedir ve öğretme-öğrenme aşamaları ile her bir öğrencinin bilgi seviyesinin arttırılması hedeflenmektedir. Bu sayede belirli bir iterasyon sonunda en iyi sonucu (sınırlayıcıları sağlayan ve minimum yapı ağırlığında olan) veren yapı modeli elde edilebilmektedir. İncelenen 942-elemanlı uzay kafes kule yapı modeli literatürden alınmıştır. Bu örnek literatürde birçok farklı algoritma yöntemi ile çözülmüştür. Sınırlayıcılar olarak AISC-ASD (American Institute of Steel Construction- Allowable Stress Design) standartlarındaki gerilme sınırlayıcıları, yer değiştirme sınırlayıcıları ve düşey elemanlar arasında geometrik sınırlayıcılar kullanılmıştır. Tasarım profilleri SAP2000'de hazırlanmış olan ve AISC'den alınan 128 W profili içeren bir kesit listesinden seçilmiştir. Optimizasyon işlemlerinin bilgisayar ortamında pratik olarak yürütülebilmesi amacıyla MATLAB programında SAP2000 OAPI (Open Application Programming Interface) ile otomatik olarak birlikte çalışabilen bir program kodlanmıştır. 942 elemanlı uzay kafes kule yapı sistemi SAP2000 programında modellenmiştir. Öğretme-öğrenme esaslı optimizasyon işlemleri için MATLAB'da geliştirilen program yardımıyla SAP2000'de hazırlanan yapı modeli sürekli güncellenerek otomatik olarak analiz edilmiştir. Bu çalışmada, 942 elemanlı uzay kafes kule yapı sisteminin öğretme-öğrenme esaslı optimizasyon yöntemi ile elde edilen tasarım sonuçları literatür sonuçları ile oldukça benzerdir. Buna göre bu optimizasyon tekniğinin yapısal optimizasyon için başarılı sonuçlar verebileceği görülmüştür.

Optimum design of space truss tower using teaching-learning based optimization

Minimum weight design of steel structures is an important research subject in structural engineering. Main purpose in this subject is to reduce steel consumption. Steel structures include discrete design variables and meta-heuristic algorithm methods are very suitable for optimum design of them. In this study, optimum design of 942-bar steel space truss tower is investigated by using teaching learning based optimization which has been developed in recent years. As in the other stochastic algorithm techniques such as genetic algorithm, harmony search algorithm, ant colony optimization, artificial bee algorithm, simulated annealing, tabu search algorithm, particle swarm optimization etc.; teaching-learning based optimization mimics environmental events. Analyses in this method are conducted by a class including students. Each student in class represents a structural model and information level of each student is tried to increase by teaching and learning phases. So, the best solution obeying the constraints and having minimum weight can be obtained after a specific number of iterations. This novel algorithm technique was developed by Rao et al. (2011) and comprised of two main phases such as teaching phase and learning phase. The number of students in class presents population size. Initial class is randomly created and the best solution in class is selected as teacher. In teaching phase, other students in class are updated to take information from teacher. If new student provides a better design solution, it is replaced with old student. In the learning phase, students in class are updated to get information among them. This phase is very similar to teaching phase. If new student produces a better solution, it is replaced with old students. 942-bar space truss tower investigated in this study is taken from literature. This example was designed by different algorithm methods in literature. The stress constraints according to AISC-ASD (American Institute of Steel Construction- Allowable Stress Design), displacement constraints and geometric size constraints for vertical members are imposed. Design profiles are selected from a specified list which is prepared in SAP2000 software and includes 128W profiles taken from AISC. A program was coded in MATLAB software which is automatically incorporated with SAP2000 OAPI (Open Application Programming Interface) to conduct practically optimization processes. 942-bar space truss tower is modeled in SAP2000 software. The structural model is continuously updated to analyze by this program. 942-bar space truss tower is an example in large scale because its members are collected into 59 different size variables. In this study, population size is selected as 20. Therefore, analyses are conducted with a class determined as 20x59 matrix. Analyses are performed along 600 iterations. Figure 3 shows the variation of the minimum steel weight with iteration steps. As seen in this figure, while steel weight in first iterations is 2000 ton, minimum steel weight is reduced to 169.868 ton after 600 iterations. The solution results obtained in this study are very close to the previous ones in literatures obtained by different algorithms. The minimum weights 172.214 ton, 171.437 ton, 171.261 ton are calculated by Hasançebi and Erbatur (2002, simulated annealing: SA), Hasançebi (2008, evolution strategies: ESs), Hasançebi et al.(2013, bat-inspired algorithm: BI), respectively. In this study, although additional constraints such as geometric size (area and dept of cross sections) for vertical members are used, the minimum weight is calculated as 169.868 ton. This weight is nearly 1% lighter than other results. These successful results show that teaching-learning based optimization is an efficient method for optimum designs of steel structures with discrete design variables. Moreover, this new method is practically applied by using MATLAB-SAP2000 OAPI. So, various structural optimization problems can be carried out by using teaching-learning based optimization