Küresel Plazma Odak Cihazında Uygulanan Farklı Voltajlar İle Nötron ve İyon Üretimi

Bu çalışmada, gelistirilen MHD modeli kullanılarak, uygulanan voltajın nötron ve iyon üretimi, radyasyon yayılımı ve iyon özellikleri üzerindeki etkileri, voltaj değerleri 15 kV ile 30 kV arasında 1'er kV değerler değiştirilerek incelendi. Joule ısınımı, elektron yakalama, bremsstrahlung radyasyonu ve çizgi radyasyonu radyasyon terimleri olarak hesaplanırken ışın-iyon hızı, enerjisi ve yoğunluğuda iyon özellikleri olarak bu çalışmada hesaplandı. Diyot voltajı altında hızlanan yüksek enerjili iyonların neden olduğu Işın-hedef nötron üretim mekanizması baskın nötron üretim mekanizmasıdır. Nötron üretiminin yanısıra diyot voltajıda hesaplanmıştır. Bu çalışmada, 30 kV voltaj için maksimum nötron üretimi 2.63 x 10^13 iken, ışın-iyon enerjisi ve hızı sırasıyla 61 keV ve 240 240 cm/µs 'ye ulaşmıştır.

Neutron and Ion Production with Various Applied Voltages in Spherical Plasma Focus

In this work, the applied voltage effect on neutron yield and ion production are studied by varying the charging voltage between 15 kV and 30 kV with 1 kV increment to investigate neutron yield, radiation emissions and ion properties using the developed MHD model. While Joule heating, radiative recombination, bremsstrahlung and line radiation are calculated as radiation terms, beam-ion speed, energy and density are calculated as ion properties. The dominant neutron production mechanism is beam-target which results from the accelerated energetic ions under the diode voltage which is calculated along with neutron yield. In this study, while maximum neutron yield is 2.63 10^13 for 30 kV charging voltage, beam-ion energy and speed reach 61 keV and 240 cm/µs, respectively.

___

  • 1. Castillo, F.; Milanese, M.; Moroso, R.; Pouzo, J. Evidence of thermal and non-thermal mechanisms coexisting in dense plasma focus d-d nuclear reactions. Journal of Physics D: Applied Physics 1999, 33 (2), 141–147.
  • 2. Gribkov, V.A.; Banaszak, A.; Bienkowska, B.; Dubrovsky, A.V.; Ivanova-Stanik, I.; Jakubowski, L.; Karpinski, L.; Miklaszewski, R.,A.; Paduch, M.; Sadowski, M.J.; Scholz, M.; Szydlowski, A.; Tomaszewski, K. Plasma dynamics in the PF-1000 device under fullscale energy storage: II. fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives. Journal of Physics D: Applied Physics 2007, 40 (12), 3592–3607.
  • 3. Talaei, A.; S. Kiai, S.M. Study the influence of the bank energy on the dynamical pinch in plasma focus. Journal of Fusion Energy 2009, 28 (3), 304–313.
  • 4. Singh, A.; Sing, L.; and Saw, S.H. Effect of the variation of pressure on the dynamics and neutron yield of plasma focus machines. IEEE Transactions on Plasma Science 2017, 45 (8), 2286–2291.
  • 5. Kubes, P.; Klir, D.; Kravarik, J.; Rezac, K.; Paduch, M.; Pisarczyk, T.; Scholz, M.; Chodukowski, T.; Bienkowska, B.; Ivanova-Stanik, I.; Karpinski, L.; Sadowski, M.J.; Tomaszewski, K.; Zielinska, E. Energy transformations in column of plasma-focus discharges with megaampere currents. IEEE Transactions on Plasma Science 2012, 40 (2), 481–486.
  • 6. Shaw, B.H.; Chapman, S.; Cooper, C.M.; Goyon, C.; Angus, J.; Link, A.; Higginson, D.P.; Liu, J.X.; Mitrani, J.M.; Podpaly, Y.A.; Povilus, A.; Schmidt, A. Maximizing neutron yields by scaling hollow diameter of a dense plasma focus anode. Journal of Applied Physics 2018, 124 (23), 233301.
  • 7. Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M.J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D. Increase in the neutron yield from a dense plasma-focus experiment performed with a conical tip placed in the centre of the anode end. Physics of Plasmas 2017, 24 (9), 092707.
  • 8. Talukdar, N.; Borthakur, S.; Neog, N.K.; Borthakur, T.K. Comparative study of neutron emission from a plasma focus device using two different anode shapes. Physics of Plasmas 2016, 23 (5), 052711.
  • 9. Habibi, M.; Mahtab, M. Experimental study of soft x-ray intensity with different anode tips in amirkabir plasma focus device. Pramana 2016, 87 (1).
  • 10. Roomi, A.; Saion, E.; Habibi, M.; Amrollahi, R.; Baghdadi, R.; Etaati, G.R.; Mahmood, W.; Iqbal, M. The effect of applied voltage and operating pressure on emitted x-ray from nitrogen (n2) gas in APF plasma focus device. Journal of Fusion Energy 2011, 30 (5), 413–420.
  • 11. Ay, Y.; Al-Halim, M.A.; Bourham, M.A. Simulation of the plasma sheath dynamics in a spherical plasma focus, The European Physical Journal D 2015, 60 (9).
  • 12. Ay, Y.; Al-Halim, M.A.; Bourham, M.A. MHD simulation for neutron yield, radiations and beam-ion properties in the spherical plasma focus. Journal of Fusion Energy 2015, 35 (2), 407–414.
  • 13. Ay, Y. A neutron source with 1014 DT neutron yield, International Journal of Modern Physics E 2020, DOI:10.1142/S0218301319500976
  • 14. Ay, Y. Effect of the cathode radius on plasma dynamics and radiation emissions in a spherical plasma focus device, Physics of Plasmas 2019, 26(10) 102506.