Elektroforetik Yöntem Kullanılarak Mg-AZ 31 Alaşımının Go/Hap ile Kaplanması ve Sinterleme Sıcaklığının Yüzeyin Mikroyapısına Etkilerinin İncelenmesi

Mg ve alaşımları, sahip oldukları yüksek biyouyumluluk, kemiğe yakın elastisite modülü, kemik gelişimine yardımcı olması, gibi özellikleri nedeniyle biyomedikal alanda kullanım açısından ilgi çekmektedir. Ancak Mg elementinin korozyona olan yüksek afinitesi, vücut sıvısı içerisinde bu alaşımların uzun süreli kalıcı implant malzemesi olarak kullanımını sınırlandırmaktadır.  Bu nedenle bu alaşımların biyomalzeme olarak uzun süreli kullanımlarını sağlayabilmek ve biyouyumluluk, biyoaktivite gibi özelliklerini geliştrimek için yüzeyleri kaplanmaktadır. Bu çalışmada Mg AZ31 alaşımı üzerine korozyon dayanımını ve biyoaktivitesini artırmak amaçlı elektroforetik yöntemle (Hidroksi apatit) HAp/ GO (Grafen oksit) kompoziti kaplanılmıştır. Kaplama işlemi sonrası 3 farklı sıcaklıkta sinterleme yapılarak sinterleme sıcaklığının film tabakasının mikroyapısı üzerindeki etkileri SEM, XRD ile incelenmiştir.  

___

  • Affatato, S. (2012). Wear of orthopaedic implants and artificial joints, Woodhead Publ. Limited, Cambridge, UK
  • Aminatun, A., Hikmawati, D., Yasin, M. (2017). The Effect of Sintering Temperature to the Quality of Hydroxyapatite Coating on Cobalt Alloys as the Candidate of Bone Implant Prosthesis, Journal of Biomimetics, Biomaterials and Biomedical Engineering, 32, 59-68
  • Amiri, H., Mohammadi, I., Afhsar, A. (2017). Electrophoretic deposition of nanozirconiacoating on AZ91D magnesium alloy for bio-corrosion control purposes, Surface & Coatings Technology, 311, 182–190
  • Asl, S.K.F., Nemeth, S., Tan, M.J. (2014), Review: Electrophoretic deposition of hydroxyapatite coatings on AZ31 magnesium substrate for biodegradable implant applications, Progress in Crystal Growth and Characterization of Materials, 60, 74-79
  • Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M.,Moghaddam, M.R.N., Alias, Y.(2014). Mechanical properties and biomedical applications of a nanotube hydroxyapatitereduced grapheme oxide composite, CARBON, 69, 32-45
  • Besra, L., Miu, L. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science, 52, 1–61
  • Chong, C.Y., Bakar, T.A.A., Fadil, N.A., Hussain, R. (2015). Electrophoretic Deposition of Hydroxyapatite Coatings on AZ31: The Effect of Nanoparticle Multiple Coating Approach, Advanced Materials Research, 1125, 484-488
  • Dickerson, J.H., Boccaccini, A.R. (2012). Electrophoretic Deposition of Nanomaterials, Springer Science Business Media, New York, USA
  • Dosic, M., Erakovic, S., Jankovic, A., Sekulic, M.V., Matic, I.Z., Stojanovic, J., Rhee, K.Y., M.V., Stankovic, Park, S.J. (2017). In vitro investigation of electrophoretically deposited bioactive hydroxyapatite/chitosan coatings reinforced by graphene, Journal of Industrial and Engineering Chemistry, 47, 336-347
  • Glocker, D., Ranade, S. (2016). Medical Coatings and Deposition Technologies, Scrivener Publ., Beverly, USA
  • Heise, S Heise, S., Höhlinger, M., Hernandez, Y.T., Palacio, J.J.P., Ortiz, J.A.R., Wagener, V., Virtanen, S., Boccacini, A.R. (2017). Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates, Electrochimica ACTA, 232, 456-464
  • Hornberger, H., Virtanen, S., Boccaccini, A.R. (2012). Biomedical coatings on magnesiumalloys – A review, ACTA BIOMATERIALIA, 8(7), 2442– 2455
  • Jafar, N.M., Abubakar, T.,Chong, C.Y., Ahmad, N.H. (2017). Effect of SinteringTemperature on the Morphology and Adhesion Strength of Eggshell Coating on Mild Steel, Solid State Phenomena, 264, 190-193
  • Jankovic, A., Erakovic, S., Sekulic, M.V., Stankovic, V.M., Park, S.J., Rheec,K.Y. (2015). Graphenebased antibacterial composite coatings electrodeposited on titanium for biomedical application, Progress in Organic Coatings, 83, 1– 10
  • Kumar, R.M., Kuntal, K.K., Singh, S., Gupta, P., Bhushan, B., Gopinath, P., Lahiri, D. (2016). Electrophoretic deposition of hydroxyapatite coating on Mg–3Zn alloy for orthopaedic application”, Surface & Coatings Technology, 287, 82–92
  • Li, M., Liu, Q., Jia, Z., Xu, X., Cheng, Y., Zheng, Y., Xi, T., Wei, S. (2014). Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological application, CARBON, 67, 185 –197
  • Mucalo, M. (2015). Hydroxyapatite (HAp) for Biomedical Applications, “Woodhead Publ., Cambridge, UK
  • Narayanan, T.S.N.S., Song, I, S. and Lee, Min-Ho. (2015). Surface Modification of Magnesium and its Alloys for Biomedical Applications Volume 2: Modification and Coating techniques, Woodhead Publ., Cambridge, UK
  • Park, J., Lakes, R.S. (2007). Biomaterials, An Introduction, Springer Science, Business Media, New York, USA
  • Riccardis, M.F.D. (2012). Ceramic Coatings Obtained by Electrophoretic Deposition: Fundamentals, Models, Post-Deposition Processes and Applications, Ceramic Coatings - Applications in Engineering, 43-68
  • Rojaee, R., Fathi, M., Raeissi, K. (2013). Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments, Applied Surface Science, 285, 664– 673
  • Saris, N-E.L., Mervaala, E., Karppanen, H., Khawaja, J.A., Lewenstam, A. (2000). Review: Magnesium An update on physiological, clinical and analytical aspects, CLIN. CHIM. ACTA, 294, 1–26.
  • Sarkar, P. (2002). Synthesis and microstructural manipulation of ceramics by electrophoretic deposition, Proceedings of The Electrochemical Society on Electrophoretic Deposition: Fundamentals and Applications, 2002- 21, Pennington, USA, 2002, 71–78.
  • Seyedraoufi, Z. S., Mirdamadi, S. (2015). In vitro biodegradability and biocompatibility of porous Mg−Zn scaffolds coated with nano hydroxyapatite via pulse electrodeposition, trans. Nonferrous met. Soc. China, 25, 4018−4027
  • Sreekanth, D., Rameshbabu, N. (2012). Development and characterization of MgO/hydroxyapatite composite coating on AZ31 magnesium alloy by plasma electrolytic oxidation coupled with electrophoretic deposition, Materials Letters, 68, 439–442
  • Staiger, M. P., Pietak, A. M., Huadmai, J., Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A revie, Biomaterials, 27, 1728– 1734.
  • Sun, J., Zhu, Y., Meng, L., Chen, P., Shi, T., Liu, X., Zheng, Y. (2016). “Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance”, ACTA BIOMATERIALIA, 45, 387- 398
  • Virtanen, S. (2011). Biodegradable Mg and Mg alloys: corrosion and biocompatibility. Materials Science and Engineering: B. 176, 1600-1608.
  • Wen, C. (2015). Surface Coating and Modification of Metallic Biomaterials, Woodhead Publ., Cambridge, UK
Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi-Cover
  • ISSN: 1309-8640
  • Başlangıç: 2009
  • Yayıncı: DÜ Mühendislik Fakültesi / Dicle Üniversitesi