Coğrafik Konuma Özel Tasarım Spektrumlarının Betonarme Yapı Performansına Etkisi

Bir bölgenin depremselliği, yerel zemin koşulları ve yapısal özellikler yapıların deprem etkisi altındakidavranışlarını ve risklerini belirlemede kullanılan önemli parametrelerdir. Yapılar ile ilgili analizlerde o bölgenindepremselliği, spektrum eğrileri ile ifade edilebilmektedir. 2019 yılında yürürlüğe giren Türkiye Bina DepremYönetmeliği ile noktaya özel spektrum eğrileri kullanılmaya başlanmıştır. Bu çalışma kapsamında Türkiye’dekiyedi farklı coğrafik bölgeden birer il seçilerek coğrafik konumun hem deprem parametrelerine hem de yapıperformans hesaplamalarını hangi düzeyde etkilediği ortaya konmaya çalışılmıştır. Ankara, Antalya, Diyarbakır,Erzurum İstanbul, İzmir ve Samsun illeri için 50 yılda aşılma olasılığı %10 (tekrarlanma periyodu 475 yıl) olanve Türkiye Bina Deprem Yönetmeliği’nde DD-2 olarak belirtilen yer hareket düzeyi ile yerel zemin sınıfı ZEolarak dikkate alınmıştır. Her il için kısa periyot harita spektral ivme katsayısı, en büyük yer ivmesi, en büyük yerhızı, yerel zemin etki katsayıları, tasarım spektral ivme katsayıları ile yatay ve düşey elastik spektrum eğrisi içinhesaplamalar yapılmıştır. Çalışma ile farklı geometrik konumlarda bulunan fakat aynı zemin özellikleri ve yerhareketi olmasına rağmen deprem parametrelerinin değişimi incelenmiştir. Coğrafik konumun yapı performanshesaplamalarına etkisi ortaya koymak adına tüm illerde aynı yapısal özelliklere sahip yedi katlı betonarme bir yapıseçilmiştir. Seçilen örnek betonarme yapı için her il için analizler gerçekleştirilmiştir. Yapı analizinde zeminözelliklerinin dikkate alındığı statik adaptif itme analiz kullanılmıştır. Elde edilen tüm sonuç değerlerikarşılaştırılmıştır. Coğrafik konum değişikliği hem deprem parametrelerini hem de yapısal analiz sonuçlarıdoğrudan etkilemektedir. Çalışma, Türkiye Bina Deprem Yönetmeliğinin sahaya özel deprem parametrelerinin birkazanım olduğu sonucunu ortaya çıkarmıştır. Herhangi bir noktada yerel zemin koşulları ve yapısal özellikler aynıolsa bile bölgenin depremsellik öğelerinin dikkate alınması gerekmektedir.

The Effect of Site-Specific Design Spectra for Geographical Location on Reinforced-Concrete Structure Performance

Seismicity, local soil conditions and structural properties of a region are important parameters in order to determinate behavior of structures under earthquake impacts and seismic risks. The seismicity of that region can be expressed with spectrum curves in the analysis of the structures. Specific spectrum curves of specific points have begun to be used with '' Turkey Seismic Building Regulations '' which entered into force in 2019. In this study, the effect of geographical regions on both earthquake parameters and structure performance calculations was investigated by selecting one district in each different geographic region in Turkey. The probability of exceedance in 50 years 10% (repetition period of 475 years) for provinces of Ankara, Antalya, Diyarbakir, Erzurum, Istanbul, Izmir and Samsun and ground motion level DD-2 and the local soil class ZE as specified in the Turkey Building Earthquake Regulation are considered. Short period map spectral acceleration coefficient, maximum ground acceleration, maximum ground velocity, local ground effect coefficients, design spectral acceleration coefficients, horizontal and vertical elastic spectrum curve were calculated for each province. In this study, although the same ground characteristics and ground motion are found in different geographical locations, changes in earthquake parameters were investigated. A seven-storey reinforced concrete structure with the same structural features was selected in all provinces in order to reveal the effect of geographic location on building performance calculations. The analysis of the selected sample reinforced concrete structure was carried out for each province. In the structural analysis, static adaptive pushover analysis was used for soil properties were taken into consideration. All obtained results were compared. Geographical location change affects both earthquake parameters and structural analysis results directly. This study reveals, it is a gain that using site-specific seismic parameters according to updated Turkey Seismic Design Code. Even if local soil conditions and structural characteristics are the same at any point, seismicity elements of the region should be taken into consideration.

___

  • [1] Borcherdt, R. D. (2004). A theoretical model for site coefficients in building code provisions. In Procs. 13th World Conference on Earthquake Engineering (pp. 1-6).
  • [2] Över, S., Büyüksaraç, A., Bektaş, Ö., Filazi, A. (2011). Assessment of potential seismic hazard and site effect in Antakya (Hatay Province), SE Turkey. Environmental Earth Sciences, 62(2), 313-326.
  • [3] Büyüksaraç, A., Bektaş, Ö., Yılmaz, H., Arısoy, M. Ö. (2013). Preliminary seismic microzonation of Sivas city (Turkey) using microtremor and refraction microtremor (ReMi) measurements. Journal of Seismology, 17(2), 425-435.
  • [4] Karaşin, İ.B., Işık E., (2017). Farklı yapı davranış katsayıları için zemin koşullarının yapı performansına etkisi. DÜMF Mühendislik Dergisi, 8(4), 661-673.
  • [5] Işık, E., Kutanis, M., Bal, İ. E. (2016). Displacement of the buildings according to site-specific earthquake spectra. Periodica Polytechnica Civil Engineering, 60(1), 37-43.
  • [6] Işık, E., Kutanis, M. (2015). Determination of local sitespecific spectra using probabilistic seismic hazard analysis for Bitlis Province, Turkey. Earth Sciences Research Journal, 19(2), 129-134.
  • [7] Işik, E., Büyüksaraç, A., Aydin, M. C. (2016a). Effects of local soil conditions on earthquake damages. Journal of Current Construction Issues. Civil Engineering Present Problems, Innovative Solutions - Sustainable Development in Construction, ed. Jarosław Górecki, BGJ Consulting, 191-198.
  • [8] Kutanis, M., Ulutaş, H., Işik, E. (2018). PSHA of Van province for performance assessment using spectrally matched strong ground motion records. Journal of Earth System Science, 127(7), 99.
  • [9] TBDY-2018, Türkiye Bina Deprem Yönetmeliği. T.C. Resmi Gazete; 30364, 2018.
  • [10] Aksoy E, İnceöz M, Koçyigit A (2007). Lake Hazar basin: a negative flower structure on the East Anatolian fault system (EAFS), SE Turkey. Turkish Journal of Earth Sciences 16: 319- 338.
  • [11] Demirci A (2019). Frequency-dependent body-Q and coda-Q in Karlıova Triple Junction and its vicinity, eastern Turkey, Turkish Journal of Earth Sciences, 28: 902-919.
  • [12]Oral B, Reilinger RE, Toksöz MN, King RW, Barka AA, Kinik I (1995). Coherent plate motions in the eastern Mediterranean continental collision zone. EOS 76 (2), 9–11.
  • [13] Le Pichon X, Chamot-Rooke N, Lallemant S, Noomen R, and Veis G (1995). Geodetic determination of the kinematics of central Greece with respectto Europe: Implications for eastern Mediterranean tectonics, Journal of Geophysical Research,100, 12,675–12,690,
  • [14] Şengör AMC (1980). Türkiye’nin Neotektoniğinin Esasları. Türkiye Jeoloji Kurumu Konferans Serisi 2: 40, Ankara (in Turkish).
  • [15] Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F. 2013. Açıklamalı Türkiye Diri Fay Haritası Ölçek 1/1.125.000: Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayın Serisi 30. ISBN: 978-605- 5310-56-1.
  • [16] KOERI (2019) Bogazici University Kandilli Observatory and Earthquake Research Institute National Earthquake Monitoring Center. Earthquake Catalog Search System http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/ (accessed 15 December 2019).
  • [17] https://tdth.afad.gov.tr/ (Access date: 08.09.2019)
  • [18] Antoniou S, Rovithakis A, Pinho R, 2002. Development and Verification of a Fully Adaptive Pushover Procedure. Proceedings of the Twelfth European Conference on Earthquake Engineering, London, UK, Paper No:822.
  • [19] Antoniou S, Pinho R, 2004. Advantages and Limitations of Force-based Adaptive and Non-Adaptive Pushover Procedures. Journal of Earthquake Engineering, 8(4):497-522. [20] Ferracuti B, Pinho R, Savoia M, Francia R, 2009. Verification of Displacement-based Adaptive Pushover Through Multi-ground Motion Incremental Dynamic Analyses. Engineering Structures, 31:1789-1799.
  • [21] Pinho R, Casarotti C, Antoniou S, 2007. A Comparison of Single-run Pushover Analysis Techniques for Seismic Assessment of Bridges. Earthquake Engineering and Structural Dynamics, 36(10):1347–1362.
  • [22] Casarotti C, Pinho R, 2007. An Adaptive Capacity Spectrum Method for Assessment of Bridges Subjected to Earthquake Action. Bulletin of Earthquake Engineering, 5(3):377-390.
  • [23] Pinho R, Monteiro R, Casarotti C, Delgado R, 2009. Assessment of Continuous Span Bridges Through Nonlinear Static Procedures, Earthquake Spectra, 25(1):143-159.
  • [24] Seismosoft, 2014. SeismoStruct v7.0 – A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures, available from http://www.seismosoft.com.
  • [25] Antoniou S, Pinho R, 2004. Development and Verification of a Displacement-based Adaptive Pushover Procedure. Journal of Earthquake Engineering, 8(5):643-661.
  • [26] Pinho R, Antoniou S, 2005. A Displacement-based Adaptive Pushover Algorithm for Assessment of Vertically Irregular Frames. Proceedings of the Fourth European Workshop on the Seismic Behaviour of Irregular and Complex Structures, Thessaloniki, Greece.
  • [27] Işık E. Özdemir M. 2017. Consistency of Concrete Material Models that Used for RC Buildings. Scientific Herald of the Voronezh State University of Architecture & Civil Engineering., 36(4):92-105.
  • [28] Işık E. Özdemir M. 2017. Performance Based Assessment of Steel Frame Structures by Different Material Models. International Journal of Steel Structures. 17(3):1021-1031.
  • [29] Mander JB. Priestley MJN. Park R. 1998. Theoretical Stressstrain Model for Confined Concrete, Journal of Structural Engineerings. 114(8):1804-1825.
  • [30] MenegottoM. Pinto PE. 1973. Method of Analysis for Cyclically Loaded RC. Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Combined Normal Force and Bending. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15-22.
  • [31] Antoniou S. Pinho R. 2003. Seismostruct–Seismic Analysis Program by Seismosoft. Technical Manual and User Manual
  • [32]Pinto, P. E. (2005). The Eurocode 8-Part 3: the new European Code for the seismic assessment of existing structures.