Boru demeti üzerinden geçen Al2O3- su nanoakışkanın pulsatif akışının ısı transferine etkisi

Bu çalışmada, sabit duvar sıcaklığına sahip boru demetleri üzerinden geçen Al2O3-su nanoakışkanın laminer pulsatif akışının ısı transferine ve sürtünme faktörüne etkileri sayısal olarak incelenmiştir. Çalışmada, dairesel kesitli borular kademeli olarak yerleştirilmiş ve analizler iki boyutlu olarak gerçekleştirilmiştir. Kullanılan eşitlikler, sonlu hacimler metodu ile SIMPLE algoritması kullanılarak çözülmüştür. Sayısal incelemelerde, nanoakışkan tipi ve partikül hacim oranı sabit tutulmuş olup, analizler Reynolds sayısının sabit bir değeri için pulsatif parametrelerin değiştirilmesi ile elde edilmiştir. Bu parametrelerin ısı transferi karakteristiği ve sürtünme faktörü üzerindeki etkileri daimi akış şartları ile karşılaştırılmıştır. Boru demeti üzerinden pulsatif akışta anlık hız ve sıcaklık dağılımları elde edilmiştir. Sayısal sonuçlar, ısı transferindeki iyileşmenin pulsatif parametrelerden oldukça etkilendiğini göstermiştir. Pulsatif genlik ve frekans arttıkça ısı transferinin de arttığı, ancak bu artışın sürtünme faktöründe de bir miktar artışa sebep olduğu gözlemlenmiştir. Çalışma sonucunda boru demetleri üzerinden nanoakışkanların pulsatif akışı için en iyi termo-hidrolik performansı sağlayan parametreler belirlenmiştir. Sonuçlar boyutsuz parametrelerin bir fonksiyonu olarak verilmiştir. 

___

  • Abdel-Rehim, Z.S., (2012). A numerical study of heat transfer and fluid flow over an in-line tube bank, Energy Sources, Part A: Recov. Util. Environ. Eff. 34 (22) 2123–2136.
  • Ahmed, M. A., Yaseen, M. M., Yusoff, M. Z. (2017). Numerical study of convective heat transfer from tube bank in cross flow using nanofluid. Case Studies in Thermal Engineering, 10, 560-569.
  • Akdag, U., (2010). Numerical investigation of pulsating flow around a discrete heater in a channel. International Communication Heat and Mass Transfer, 37 (7), 881-889.
  • Akdag, U., Akcay, S., Demiral, D., (2014). Heat Transfer Enhancement with Laminar Pulsating Nanofluid Flow in a Wavy Channel, International Communication Heat and Mass Transfer, 59, 17–23.
  • Alam, T., Kim, M.H., (2018). A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renewable and Sustainable Energy Reviews, 81, 813-839.
  • ANSYS Fluent user guide & theory guide- Release 15.0, (2015). Fluent Ansys Inc, USA.
  • Gamrat, G., Marinet, M.F., Person, S. L., (2008). Numerical study of heat transfer over banks of rods in small Reynolds number cross-flow, International Journal Heat and Mass Transfer, 51, 853–864.
  • Haitham, M.S., Bahaidarah, H.M.S., Anand, N.K., Chen, H.C., (2005). A numerical study of fluid flow and heat transfer over a bank of flat tubes, Numerical Heat Transfer, Part A Appl. 48:4, 359–385.
  • Heris, S.Z., Etemad S.G., Esfahany M.N., (2009). Convective heat transfer of a Cu/water nanofluid flowing through a circular tube, Experimental Heat Transfer, 22, 217–227.
  • Ho, C.J., Chang, C.Y., Wei, M.Y., (2017). An experimental study of forced convection effectiveness of Al2O3-water nanofluid flowing in circular tubes, International Communication Heat and Mass Transfer, 83, 23–29.
  • Jun, B.H, Jiin, Y.J., (2011). Numerical investigation of nanofluids laminar convective heat transfer through staggered and in-lined tube banks, F.L. Gaol et al. (Eds.), Proc. of the 2nd International Congress on CACS, AISC 144, 483–490.
  • Kakac, S., Pramuanjaroenkij, A., (2009). Review of Convective Heat Transfer Enhancement with Nanofluids”. International Journal Heat and Mass Transfer, 52, 3187–3196.
  • Khan, W.A., Culham, J.R., Yovanovich, M.M., (2006). Convection heat transfer from tube banks in crossflow: analytical approach, International Journal Heat and Mass Transfer, 49, 25–26, 4831–4838.
  • Konstantinidis, E., Castiglia, D., Balabani, S., Yianneskis, M., (2000). On the Flow and Vortex Shedding Characteristics of an In-Line Tube Bundle in Steady and Pulsating Crossflow,. Chemical Engineering Research and Design, 78 (8), 1129–1138.
  • Konstantinidis, E., Balabani, S., Yianneskis, M.. (2002). A study of vortex shedding in a staggered tube array for steady and pulsating cross-flow. Journal of Fluids Engineering 124:3, 737-746.
  • Lavasani, A.M., Bayat, H., Maarefdoost, T., (2014). Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow, Applied Thermal Engineering, 65:1–2, 85–93.
  • Li, Q., Xuan, Y. (2000). Heat transfer enhancement of nanofluids, International Journal Heat and Fluid Flow, 21, 58–64.
  • Mangrulkar, C.K., Dhoble, A.S., Deshmukh, A.R., Mandavgane, S.A., (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow, Applied Thermal Engineering. 110, 521–538.
  • Mangrulkar, C.K., Kriplani, V.M., (2016). Experimental investigation of convective heat transfer enhancement using alumina / water and copper oxide / water nanofluids, Thermal Science, 20, 1681–1692.
  • Minea, A.A., (2013). Effect of microtube length on heat transfer enhancement of a water/Al2O3 nanofluid at high Reynolds numbers, International Journal Heat and Mass Transfer, 62, 22–30.
  • Mueller, A.C., Chiou, J.P.. (1988). Review of various types of flow maldistribution in heat exchangers, Heat Transfer Engineering, 9: 2, 36-50.
  • Narrein, K., Sivasankaran, S., Ganesan, P., (2016). Numerical investigation of two-phase laminar pulsating nanofluid flow in a helical microchannel, Numerical Heat Transfer, Part A: Applications, 69: (8), 921-930.
  • Patel, J.T., Attal, M.H., (2016). An Experimental Investigation of Heat Transfer Characteristics of Pulsating Flow in Pipe. International Journal of Current Engineering and Technology, 6, 5: 1515-1521.
  • Rahgoshay, M., Ranjbar, A. A., Ramiar, A. (2012). Laminar pulsating flow of nanofluids in a circular tube with isothermal wall. International Communication Heat and Mass Transfer, 39 (3) 463-469.
  • Salcedo, E., Cajas, J.C., Treviño, C., Martínez, L., (2016). Unsteady mixed convection heat transfer from two confined isothermal circular cylinders in tandem: buoyancy and tube spacing effects, International Journal Heat and Fluid Flow, 60, 12–30.
  • Yang, Y.T., Lai, F.H., (2010). Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system, International Journal Heat and Mass Transfer, 53: 25–26, 5895–5904.
  • Zhang, L.Z., Ouyang, Y.W., Zhang, Z.G., Wang, S.F., (2015). Oblique fluid flow and convective heat transfer across a tube bank under uniform wall heat flux boundary conditions, International Journal Heat and Mass Transfer, 91, 1259–1272.
  • Zukauskas, A., (1987). Heat transfer from tubes in cross flow, Advances in Heat Transfer, 18: 87.