Altın nanomalzeme sentezi ve karekterizasyonu

Nanobiyoteknoloji, nanobilim ve teknolojide çarpıcı ve en hızlı gelişen alanlardan biridir. Altın nanopartikülleri (AuNP'ler), yeşil sentez ile herhangi bir yüzey aktif madde, stabilizatör  ve kimyasal madde kullanılmadanbıttım(Pistacia terebinthus) yaprak özütü kullanılarak elde edilmiştir. Elde edilen AuNP’lerin karekterizasyonu UV-vis, SEM-EDX, XRD, FTIR ve TGA-DTA ile yapıldı. SEM-EDX, analizi incelendiğinde sentezlenen nanomalzemelerin kristal boyutunun 100 nm’nin altında olduğu ve kristal yapısının küresel olduğu anlaşılmaktadır. UV-vis, analizi verileri gösterdiki oda koşullarında farklı zaman aralıklarında yapılan ölçümler sonucunda renk değişimi ile maksimum dalga boyunun 335 nm’de karesteristik pik verdiği görüldü. XRD analizi verilerinden kristal yapılarının boyutu 14.37 nm büyüklükte olduğu hesaplandı. Ayrıca çalışmamızda sentezlenen nanomalzemenin TGA-DTA analizi yapılarak nanoparçacıkların 1000 oC ‘ye kadar dayanıklı olduğu rapor edildi.

___

  • Acay, A, Baran, M.F. ve Eren, A. 2019. “Investigating Antimicrobial Activity Of Silver Nanoparticles Produced Through Green Synthesis Using Leaf Extract Of Common Grape (vitis vinifera)”. 17(2): 4539–46.
  • Baran, M. F. 2019. “Alıç Bitkisinin Yaprak Özütü Kullanılarak AgNP’erin Yeşil Sentezi ve Anti Mikrobiyal Aktivitelerinin Değerlendirilmesi: Fen Bilimleri ve Matematik Alanında Araştirma ve değerlendirmeler, 111–120.
  • Baran, M.F., 2019. “Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül (AgNP) sentezi ve antimikrobiyal etkisinin incelenmesi. DÜMF Mühendislik Dergisi 10:1 (2019) : 221-227.
  • Dubey, S.P., Lahtinen, M., Sillanpää, M., 2010. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surfaces A Physicochem. Eng. Asp. 364, 34–41.
  • El-Batal, A.I., Al-Hazmi, N.E., Mosallam, F.M., El-Sayyad, G.S., 2018. Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb. Pathog. 118, 159–169.
  • Kumar, V., Singh, D.K., Mohan, S., Gundampati, R.K., Hasan, S.H., 2017. Photoinduced green synthesis of silver nanoparticles using aqueous extract of Physalis angulata and its antibacterial and antioxidant activity. J. Environ. Chem. Eng. 5, 744–756.
  • Owaid, M.N., Raman, J., Lakshmanan, H., Al-Saeedi, S.S.S., Sabaratnam, V., Ali Abed, I., 2015. Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater. Lett. 153, 186–190.
  • Saravanakumar, K., Chelliah, R., Shanmugam, S., Varukattu, N.B., Oh, D.H., Kathiresan, K., Wang, M.H., 2018. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. J. Photochem. Photobiol. B Biol.Emam, H. E., Nancy S. El-Hawary, ve H. Ahmed., B. 2017. “Green technology for durable finishing of viscose fibers via self-formation of AuNPs”. International Journal of Biological Macromolecules 96: 697–705.http://dx.doi.org/10.1016/j.ijbiomac.2016.12.080.Eren, A, ve Baran. M.F., 2019. “Green Synthesis , Characterization And Antimicrobial Activity Of Silver Nanoparticles ( AgNPs ) from maize (zea mays)”. 17(2): 4097–4105.Geethalakshmi, R., ve Sarada, D. V L. 2013. “Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L.” Industrial Crops and Products 51: 107–15. http://dx.doi.org/10.1016/j.indcrop.2013.08.055.
  • Kumar, V., Mary, P., Jelastin Kala, S. ve Prakash, K. S., 2019. “Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies”. Materials Letters 236: 19–22. https://doi.org/10.1016/j.matlet.2018.10.025.
  • Kumar, P. Saravana, M. Vimalin J, Malathi, J., ve Ignacimuthu, S. 2018. “Anticancer effects of one-pot synthesized biogenic gold nanoparticles (Mc-AuNps) against laryngeal carcinoma”. Journal of Drug Delivery Science and Technology 44(18):118–28. https://doi.org/10.1016/j.jddst.2017.12.008.
  • Laksee, S., Puthong, S., Kongkavitoon, P., Tanapat P, Nongnuj M., 2018. “Facile and green synthesis of pullulan derivative-stabilized Au nanoparticles as drug carriers for enhancing anticancer activity”. Carbohydrate Polymers 198(March): 495–508.doi.org/10.1016/j.carbpol.2018.06.119.
  • Mythili, R., Selvankumar, T., Srinivasan, P. Sengottaiyan, A., Sabastinraj, J., Al-Sabri, A.F., Ahmed, K.K., Govarthanan, S. M., Kim, H. 2018. “Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesised from vegetable waste”. Journal of Molecular Liquids 262: 318–21. https://doi.org/10.1016/j.molliq.2018.04.087.
  • Patra, J. K., Das, G., ve Baek, K. H. (2016). Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. Journal of Photochemistry and Photobiology B: Biology, 161, 200–210. https://doi.org/10.1016/j.jphotobiol.2016.05.021
  • Shankar, S. Shiv, Akhilesh Rai, Absar Ahmad, ve Murali Sastry. 2004. “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth”. Journal of Colloid and Interface Science 275(2): 496–502.
  • Singh, Ankit Kumar vd. 2017. “Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential”. Journal of Photochemistry and Photobiology B: Biology 166: 202–11. http://linkinghub.elsevier.com/retrieve/pii/S1011134416309241.
  • Umamaheswari, C, A Lakshmanan, ve N S Nagarajan. 2018. “Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange”. Journal of Photochemistry & Photobiology, B: Biology 178: 33–39. www.elsevier.com/locate/jphotobiol.
  • Vellaichamy, Balakumar, Periakaruppan Prakash, ve Jeena Thomas. 2018. “Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction”. Ultrasonics Sonochemistry 48(May): 362–69.