Kahverengi yağ dokusundaki karbonik anhidraz III ekspresyonu ve oksidatif stress arasındaki ilişki

Amaç: Yüksek yağlı besinler yağ dokusu hacmini artırır ve obeziteyi indükler. Kahverengi yağ dokusunda karbonik anhidraz III bol miktarda bulunmasına rağmen fonksiyonu tam olarak bilinmemektedir. Bu çalışmada karbonik anhidraz III enzim mRNA ekspresyonu ve oksidatif stress markırı olan malondialdehit arasındaki ilişkinin incelenmesi amaçlandı. Ayrıca antioksidan molekül olan N-asetilsisteinin bu ilişkiyi nasıl etkilediği saptanmaya çalışıldı. Yöntemler: Çalışmamız her grupta altı sıçan bulunan üç grup üzerinde (kontrol, obez ve antioksidan grup) yapıldı. Deney grupları, grupların özelliklerine göre belirlenmiş yüksek yağlı diyet veya kontrol diyetiyle 85 gün beslendi. Besleme süresinin sonunda scapula bölgesinden alınan kahverengi yağ dokusunda karbonik anhidraz III mRNA ekspresyonu, total karbonik anhidraz aktivitesi ve malondialdehit seviyesi ölçüldü. Bulgular: Obez grubunda kontrol grubuna göre karbonik anhidraz III mRNA ekspresyonunun daha yüksek olduğu (p=0.004) ve malondialdehit seviyesinin daha düşük olduğu (p=0.03) saptandı. Antioksidan grupta kontrol grubuna göre karbonik anhidraz III mRNA ekspresyon seviyesinin daha yüksek olduğu (p=0.006) ve malondialdehit seviyesinin daha düşük olduğu (p=0.006) tesbit edildi. Bunlara ilaveten obez grubunda karbonik anhidraz III mRNA ekspresyonu antioksidan grubuna göre daha yüksek olduğu belirlendi (p= 0.01). Sonuç: Bu çalışma yüksek yağlı diyetle beslenen sıçanların kahverengi yağ dokusunda karbonik anhidraz III mRNA ekspresyonunun arttığını ve malondialdehit seviyesinin azaldığını dolayısıyla oksidatif stresin kısmen baskılandığını gösterdi.

The relationship between carbonic anhydrase-III expression and oxidative stress in brown adipose tissue

Objective: High-fat foods increase adipose tissue size, and induce obesity. Although carbonic anhydrase III is abundantly found in brown adipose tissue, its function is not fully defined. In this study, we investigatedthe relationship between carbonic anhydrase III enzyme mRNA expression and malondialdehyde, oxidativestress marker, in brown adipose tissue of rats that were fed high-fat diets. In addition, we investigated potentialeffect of N-acetylcysteine as an antioxidant in this relationship. Methods: In our study three experimental groups were formed and each contained 6 rats (control, obese, andantioxidant groups). The experimental groups were fed for a duration of 85 days with high fat diets. In these groups,carbonic anhydrase III mRNA expression, total carbonic anhydrase hydratase activitie, and malondialdehyde levelswere measured in brown adipose tissues dissected from rat scapula regions.Results: According to our findings, carbonic anhydrase III mRNA expression was higher in the obese group than in thecontrol group (p = 0.004), and malondialdehyde levels were lower in the obese group than in the control group (p =0.03). It was observed that carbonic anhydrase III mRNA expression was higher in the antioxidant group than in thecontrol group (p = 0.006), and malondialdehyde levels were lower in the antioxidant group than in the control group(p = 0.006). In addition, in the obese group carbonic anhydrase III mRNA expression was higher than in theantioxidant group (p=0.01).Conclusion: In brown adipose tissue of rats that were fed high-fat diets, this study showed that the carbonicanhydrase III mRNA expression increased and the malondialdehyde level decreased.

___

  • Nammi S, Koka S, Chinnala KM, Boini KM. Obesity: An overview on its current perspectives and treatment options. Nutr J. 2004; 3: 1-8.
  • Basdevant AB, Aron-Wisnewsky J. Obesity: an evolving process. in: Bastard JP, Feve B (eds) Physiology and physiopathology of adipose tissue. Verlag France: Springer, 2013: 231-42.
  • Haslam DW, James WP. Obesity. Lancet. 2005; 366: 1197-209.
  • Vázquez-Vela MEF, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res. 2008; 39: 715-28.
  • Frühbeck G. Overwiev of adipose tissue and its role in obesity and metabolic disorders. in: Kaiping Yang (ed) Adipose tisue protocols, Second ed. New Jersey: Humana press, 2001: 1-22.
  • Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: Tracking obesity to its source. Cell. 2007; 131: 242- 56.
  • Ibrahim MM. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes Rev. 2010; 11: 11-8.
  • Cannon B, Nedergaard J. Brown Adipose Tissue: Function and physiological significance. Physiol Rev. 2004; 84: 277–359.
  • Cinti S. Anatomy of the adipose organ. Eat Weight Disord. 2000; 5: 132–42.
  • Ricquier D, Bouillaud F. Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol. 2000; 529: 3–10.
  • Supuran CT. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008; 7: 168–81.
  • Kim G, Lee TH, Wetzel P, et al. Carbonic anhydrase III is not required in the mouse for normal growth, development, and life span. Mol Cell Biol. 2004; 24: 9942-47.
  • Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995; 64: 375–401.
  • Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab. 2012; 302: E19-E31.
  • Raisanen SR, Lehenkari P, Tasanen M, Rahkila P, Harkonen PL, Vaananen HK. Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FABES J. 1999; 3: 513-22.
  • Available at: https://www.genequantification.de/roche-e-method-2006.pdf
  • Available at: https://plantbio.okstate.edu/images/pdfs/Roche_RTPCR_Manual.pdf
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86: 271-78.
  • Wilbur KM, Anderson NG. Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem. 1948; 176: 147-54.
  • Alver A, Şentürk A, Çakirbay H, Menteşe A, Gökmen F. Carbonic anhydrase II autoantibody and oxidative stress in rheumatoid arthritis. Clinical Biochemistry. 2011; 44: 1385–9.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-54.
  • Vincent HK, Taylor AG. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes. 2006; 30: 400–18.
  • Galinier A, Carriere A, Fernandez Y, et al. Site specific changes of redox metabolism in adipose tissue of obese Zucker rats. FEBS Lett. 2006; 580: 6391-98.
  • Long EK, Olson DM, Bernlohr DA. High-fat diet induces changes in adipose tissue trans-4-oxo-2- nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radic Biolo Med. 2013; 63: 390-8.
  • Kelly GS. Clinical applications of N-acetylcysteine. Altern Med Rev. 1998; 3: 114-27.
  • Chai YC, Jung CH, Lii CK, et al. Identification of an abundant S-thiolated rat liver protein as carbonic anhydrase III. Characterization of S-thiolation and dethiolation reactions. Arch Biochem Biophys. 1991; 284: 270–8.
  • Lii CK, Chai YC, Zhao W, Thomas JA, Hendrich S. Sthiolation and irreversible oxidation of sulfhydryls on carbonic anhydrase III during oxidative stress: A method for studying protein modification in intact cells and tissues. Arch Biochem Biophys. 1994: 308: 231–9.
  • Frost SC. Physiological functions of the alpha class of carbonic anhydrases. in: Frost SC, McKenna R (eds) Carbonic anhydrase: Mechanism, regulation, links to disease and industrial applications. Dorthrecht: Springer, 2014: 9-30.
  • Koester MK, Register AM, Nolmann EA. Basic muscle protein, a third genetic locus isoenzyme of carbonic anhydrase? Biochem Biophys Res Commun. 1977; 76: 196–204.
  • Koester MK, Pullan LM, Noltmann EA. The pnitrophenyl phosphatase activity of muscle carbonic anhydrase. Arch Biochem Biophys. 1981; 211: 632–42.
Dicle Tıp Dergisi-Cover
  • ISSN: 1300-2945
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1963
  • Yayıncı: Cahfer GÜLOĞLU