Karadeniz Ereğli Liman Bölgesindeki Sıvı Dökme Yük Taşıyıcılarının Yakıt Tüketimi ve Ortaya Çıkan Emisyonlarının Hesaplanması

Çalışmanın amacı, Karadeniz Ereğli liman bölgesindeki liman ve demirleme operasyonlarında tanker gemilerinden kaynaklanan salımların hesaplanmasıdır. Hesaplama, TC Ulaştırma ve Altyapı Bakanlığı tarafından yayınlanan veriler yardımıyla yapılmıştır. Limana gelen gemilerin ortalama gross tonajı belirlendikten sonra, ortalamaya benzer gros tonajlı bir gemi için uygulanabilir bir deniz dizel jeneratör seti bulundu. Üreticinin veri sayfası, deniz dizel jeneratörlerinin özelliklerini verdi ve jeneratörlerin çalışma modlarını, elektrik gereksinimlerini ve yük paylaşımını belirlemek için bir okyanus gemisi tanker gemisinden alınan operasyonel veriler kullanıldı. Çalışma modlarının kullanım saatleri için liman ve demirleme gemiden toplandı Sıvı dökme yük gemilerinden kaynaklanan gemi salımlarının belirlenmesinde tümevarımsal yöntem kullanılmış ve bulgular Türkiye'nin iç sularındaki tüm tanker kaynaklı emisyonlarla karşılaştırılmıştır. Sonuçlar, belirtilen bölgede yanaşma operasyonları sırasında tanker gemileri tarafından 5.257,79 t gemi dizel yakıtı tüketildiğini ve 16.856.49 t CO2, 505.27 t NOx ve 52.58 t SOx salınımına neden olduğunu göstermiştir. Bu istatistikler, yeşil liman uygulamaları ile limandan gemilere elektrik sağlanarak jeneratörlerin kullanılmasını önlemenin önemini vurgulamaktadır.

Calculation of the Fuel Consumption and Resulting Emissions of Liquid Bulk Carriers in Karadeniz Ereğli Port Region

The objective of the study is to calculate the emissions sourced by tanker vessels at port and anchorage operations in the Karadeniz Ereğli port region. The computation was performed using data that was authenticated by the Turkish Ministry of Transport and Infrastructure. A practicable marine diesel generator set for a vessel with a similar gross tonnage to the average was found after the average gt of the ships that arrived at the port was established. The manufacturer's data sheet gave the specs for the marine diesel generators, and operational data from an oceangoing tanker vessel was used to determine the generators' operating modes, electrical requirements, and load sharing. The port and anchorage for the operation modes' times utilization hours were collected from the vessel The inductive method was used to determine ship emissions sourced by liquid bulk carriers, and the findings were compared to all tanker-based emissions in Turkey's inland waters. Findings indicated that 5,257.79 t of marine gas oil was consumed and resulting in 16,856.49 t of CO2, 505.27 t of NOx, and 52.58 t of SOx emitted by tanker vessels during berthing operations in the specified region. These statistics emphasize the significance of cold ironing with green port applications.

___

  • Abdul-Wahab, S. A., Elkamel, A., Al Balushi, A. S., Al-Damkhi, A. M., & Siddiqui, R. A. (2008). Modeling of nitrogen oxides (NOx) concentrations resulting from ships at berth. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 43(14), 1706–1716. https://doi.org/10.1080/10934520802330370
  • Alver, F., Saraç, B. A., & Alver Şahin, Ü. (2018). Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmospheric Pollution Research, 9(5), 822–828. https://doi.org/10.1016/j.apr.2018.02.003
  • Chen, D., Zhao, Y., Nelson, P., Li, Y., Wang, X., Zhou, Y., Lang, J., & Guo, X. (2016). Estimating ship emissions based on AIS data for port of Tianjin, China. Atmospheric Environment, 145, 10–18. https://doi.org/10.1016/j.atmosenv.2016.08.086
  • Chen, S., Meng, Q., Jia, P., & Kuang, H. (2021). An operational-mode-based method for estimating ship emissions in port waters. Transportation Research Part D: Transport and Environment, 101(October), 103080. https://doi.org/10.1016/j.trd.2021.103080
  • Cooper, D. A. (2003). Exhaust emissions from ships at berth. Atmospheric Environment, 37(27), 3817–3830. https://doi.org/10.1016/S1352-2310(03)00446-1
  • Cullinane, K., Tseng, P. H., & Wilmsmeier, G. (2016). Estimation of container ship emissions at berth in Taiwan. International Journal of Sustainable Transportation, 10(5), 466–474. https://doi.org/10.1080/15568318.2014.975303
  • DNV. (2022). EEXI – Energy Efficiency Existing Ship Index. https://www.dnv.com/maritime/insights/topics/eexi/index.html?gclid=CjwKCAjwv-GUBhAzEiwASUMm4nww5onoBP7iRtliXL- (Acssess: 02.11.2022).
  • Du, Y., Chen, Q., Quan, X., Long, L., & Fung, R. Y. K. (2011). Berth allocation considering fuel consumption and vessel emissions. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1021–1037. https://doi.org/10.1016/j.tre.2011.05.011
  • Durán-Grados, V., Amado-Sánchez, Y., Calderay-Cayetano, F., Rodríguez-Moreno, R., Pájaro-Velázquez, E., Ramírez-Sánchez, A., Sousa, S. I. V., Nunes, R. A. O., Alvim-Ferraz, M. C. M., & Moreno-Gutiérrez, J. (2020). Calculating a drop in carbon emissions in the strait of gibraltar (Spain) from domestic shipping traffic caused by the covid-19 crisis. Sustainability (Switzerland), 12(24), 1–14. https://doi.org/10.3390/su122410368
  • Durán-Grados, V., Rodríguez-Moreno, R., Calderay-Cayetano, F., Amado-Sánchez, Y., Pájaro-Velázquez, E., Nunes, R. A. O., Alvim-Ferraz, M. C. M., Sousa, S. I. V., & Moreno-Gutiérrez, J. (2022). The Influence of Emissions from Maritime Transport on Air Quality in the Strait of Gibraltar (Spain). Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912507
  • Eyring, V., Köhler, H. W., Van Aardenne, J., & Lauer, A. (2005). Emissions from international shipping: 1. The last 50 years. Journal of Geophysical Research D: Atmospheres, 110(17), 171–182. https://doi.org/10.1029/2004JD005619
  • Fameli, K. M., Kotrikla, A. M., Psanis, C., Biskos, G., & Polydoropoulou, A. (2020). Estimation of the emissions by transport in two port cities of the northeastern Mediterranean, Greece. Environmental Pollution, 257, 113598. https://doi.org/10.1016/j.envpol.2019.113598
  • Gan, L., Che, W., Zhou, M., Zhou, C., Zheng, Y., Zhang, L., Rangel-Buitrago, N., & Song, L. (2022). Ship exhaust emission estimation and analysis using Automatic Identification System data: The west area of Shenzhen port, China, as a case study. Ocean and Coastal Management, 226(April), 106245. https://doi.org/10.1016/j.ocecoaman.2022.106245
  • Gerretsen I. (2022). EU carbon tax puts a price on shipping emissions. https://chinadialogue.net/en/transport/eu-carbon-tax-puts-a-price-on-shipping-emissions/#:~:text=Ships emit around one billion,to the World Economic Forum (Acssess: 02.11.2022).
  • Guo, M., Fu, Z., Ma, D., Ji, N., Song, C., & Liu, Q. (2015). A Short Review of Treatment Methods of Marine Diesel Engine Exhaust Gases. Procedia Engineering, 121, 938–943. https://doi.org/10.1016/j.proeng.2015.09.059
  • Hulskotte, J. H. J., & Denier van der Gon, H. A. C. (2010). Fuel consumption and associated emissions from seagoing ships at berth derived from an on-board survey. Atmospheric Environment, 44(9), 1229–1236. https://doi.org/10.1016/j.atmosenv.2009.10.018
  • IMO. (2000). First IMO GHG Study 2000. London, UK.
  • IMO. (2009). Second IMO GHG Study 2009. London, UK: 2009.
  • IMO. (2014). Third IMO GHG Study 2014. London, UK: 2014.
  • IMO. (2018). Initial IMO Strategy on Reduction of GHG Emissions from Ships. London, UK.
  • IMO. (2020). Fourth IMO GHG Study 2020. London, UK.
  • Konur, O., Yuksel, O., Aykut Korkmaz, S., Ozgur Colpan, C., Saatcioglu, O. Y., & Koseoglu, B. (2023). Operation-dependent exergetic sustainability assessment and environmental analysis on a large tanker ship utilizing Organic Rankine cycle system. Energy, 262(PA), 125477. https://doi.org/10.1016/j.energy.2022.125477
  • Konur, O., Yuksel, O., Korkmaz, S. A., Colpan, C. O., Saatcioglu, O. Y., & Muslu, I. (2022). Thermal design and analysis of an organic rankine cycle system utilizing the main engine and cargo oil pump turbine based waste heats in a large tanker ship. Journal of Cleaner Production, 368(January), 133230. https://doi.org/10.1016/j.jclepro.2022.133230
  • Kuzu, S. L., Bilgili, L., & Kiliç, A. (2021). Estimation and dispersion analysis of shipping emissions in Bandirma Port, Turkey. Environment, Development and Sustainability, 23(7), 10288–10308. https://doi.org/10.1007/s10668-020-01057-6
  • Liu, B., & Wang, Y. (2021). Simulation-based emission calculation method for container terminal production operation system. IOP Conference Series: Earth and Environmental Science, 638(1). https://doi.org/10.1088/1755-1315/638/1/012028
  • LR. (2022). EEXI and CII Regulation Awarenes. https://www.lr.org/en/training/understanding-rules-and-regulations/eexi-and-cii- regulation-awareness/ (Acssess: 02.11.2022).
  • Maragkogianni, A., & Papaefthimiou, S. (2015). Evaluating the social cost of cruise ships air emissions in major ports of Greece. Transportation Research Part D: Transport and Environment, 36, 10–17. https://doi.org/10.1016/j.trd.2015.02.014
  • McArthur, D. P., & Osland, L. (2013). Ships in a city harbour: An economic valuation of atmospheric emissions. Transportation Research Part D: Transport and Environment, 21, 47–52. https://doi.org/10.1016/j.trd.2013.02.004
  • Murena, F., Mocerino, L., Quaranta, F., & Toscano, D. (2018). Impact on air quality of cruise ship emissions in Naples, Italy. Atmospheric Environment, 187(March 2018), 70–83. https://doi.org/10.1016/j.atmosenv.2018.05.056
  • Nguyen, P. N., Woo, S. H., & Kim, H. (2022). Ship emissions in hotelling phase and loading/unloading in Southeast Asia ports. Transportation Research Part D: Transport and Environment, 105(February), 103223. https://doi.org/10.1016/j.trd.2022.103223
  • Nunes, R. A. O., Alvim-Ferraz, M. C. M., Martins, F. G., & Sousa, S. I. V. (2017). Assessment of shipping emissions on four ports of Portugal. Environmental Pollution, 231, 1370–1379. https://doi.org/10.1016/j.envpol.2017.08.112
  • Progiou, A. G., Bakeas, E., Evangelidou, E., Kontogiorgi, C., Lagkadinou, E., & Sebos, I. (2021). Air pollutant emissions from Piraeus port: External costs and air quality levels. Transportation Research Part D: Transport and Environment, 91(x), 102586. https://doi.org/10.1016/j.trd.2020.102586
  • Styhre, L., Winnes, H., Black, J., Lee, J., & Le-Griffin, H. (2017). Greenhouse gas emissions from ships in ports – Case studies in four continents. Transportation Research Part D: Transport and Environment, 54, 212–224. https://doi.org/10.1016/j.trd.2017.04.033
  • Tichavska, M., Tovar, B., Gritsenko, D., Johansson, L., & Jalkanen, J. P. (2019). Air emissions from ships in port: Does regulation make a difference? Transport Policy, 75(September 2015), 128–140. https://doi.org/10.1016/j.tranpol.2017.03.003
  • Tran, N. K., Lam, J. S. L., Jia, H., & Adland, R. (2022). Emissions from container vessels in the port of Singapore. Maritime Policy and Management, 49(3), 306–322. https://doi.org/10.1080/03088839.2021.1980236
  • Tzannatos, E. (2010). Cost assessment of ship emission reduction methods at berth: The case of the port of Piraeus, Greece. Maritime Policy and Management, 37(4), 427–445. https://doi.org/10.1080/03088839.2010.486655
  • UAB. (2022). Denizcilik İstatistikleri. T.C. UAB Denizcilik İstatistikleri. https://denizcilikistatistikleri.uab.gov.tr/ (Acssess: 02.11.2022)
  • Woo, D., & Im, N. (2022). Estimation of the Efficiency of Vessel Speed Reduction to Mitigate Gas Emission in Busan Port Using the AIS Database. Journal of Marine Science and Engineering, 10(3). https://doi.org/10.3390/jmse10030435
  • YANMAR. (2018). Project Guide-Marine Auxiliary Diesel Engine- Model 6EY18 Series. https://www.marinedieselbasics.com/wp-content/uploads/edd/Yanmar-6EY18-Project-Guide-1.pdf (02.11.2022)
  • Yeryganov, O., & Varbanets, R. (2018). Features of the fastest pressure growth point during compression stroke. Diagnostyka, 19(2), 71–76. https://doi.org/10.29354/diag/89729
  • Yuksel, O., & Koseoglu, B. (2022a). Numerical simulation of the hybrid ship power distribution system and an analysis of its emission reduction potential. Ships and Offshore Structures, 1–17. https://doi.org/10.1080/17445302.2022.2028435
  • Yuksel, O., & Koseoglu, B. (2022b). Regression Modelling Estimation of Marine Diesel Generator Fuel Consumption and Emissions. Transactions on Maritime Science, 11(1), 79–94. https://doi.org/10.7225/toms.v11.n01.w08