THERMAL CONDUCTIVITY OF DIFFERENT COMPOSITE RESIN MATERIALS IN DIFFERENT POLYMERIZATION TIMES AND MODES

ABSTRACT   Aim: The current study investigated the thermal conductivity of dimethacrylate- and silorane-based composite resins at different polymerization times and modes. Materials and Method: Forty dentin discs (8 mm diameter, 1.5 mm thick) were obtained from caries-free human molar teeth. Filtek Silorane (3M ESPE, Minnesota, USA) and Filtek Z550 (3M ESPE, Minnesota, USA) composite were polymerized with a  LED (Light-Emitting-Diode) curing device (Valo, Ultradent Products Inc., Utah, USA), in two modes in different times (xtra power mode, 3200 mW/cm2; 3-, 6-, 9-, 12-, +2 s / standard mode 1000 mW/cm2, 10-, 20-, 30-, 40-, +2 s)(n=10). Temperature changes in the dentin discs were measured with a K-type thermocouple (E-680, Elimko Co., Ankara, Turkey) and recorded. Data were statistically analyzed using Analysis of variance and independent sample t test (α=0.05) Results: Mean temperature changes were significantly different among polymerization times and modes (p<0.05). Temperature change of Filtek Silorane were significantly higher than Filtek Z550 for each time interval and curing mode (p<0.05).  Conclusion: As the polymerization time increases, the temperature increase in the dentin may adversely affect to the pulp health.Key Words: Thermal conductivity, dental composite  resin, LED curing unit, polymerization timeFARKLI KOMPOZIT REZIN MATERYALLERIN FARKLI KÜRLEME SÜRELERINDE VE MODLARINDA TERMAL ILETKENLIKLERI ÖZ Amaç: Bu çalışmada siloran-esaslı ve dimetakrilat-esaslı kompozitlerin farklı polimerizasyon sürelerinde ve modlarında termal iletkenlikleri değerlendirildi Gereç ve Yöntem: Sağlam insan üçüncü molar dişlerinden 40 dentin disk (8 mm çap, 1.5 mm kalınlık) hazırlandı. Filtek Silorane (3M ESPE Dental Ürünleri, Minnesota, ABD) ve Filtek Z550 (3M ESPE Dental Ürünleri, Minnesota, ABD) kompozit örnekleri, led ışık cihazı ile (Valo, Ultradent Products Inc., Utah, ABD) iki farklı modda ve farklı sürelerde (xtra power mod, 3200 mW/cm2; 3, 6, 9, 12 +2 sn / standard mod 1000 mW/cm2, 10, 20, 30, 40, +2 sn) polimerize edildi. Dentin örneklerindeki sıcaklık artışı, K tipi termokapıl (E-680, Elimko Co., Ankara, Türkiye) kullanılarak ölçüldü. Her zaman aralığı arasındaki ölçüm farkları (ΔT) kaydedildi. Veriler ANOVA ve bağımsız örneklem t-testi ile analiz edildi. (α = 0.05) Bulgular: Farklı polimerizasyon süreleri ve modları arasında ortalama sıcaklık artışları açısından anlamlı farklılıklar tespit edildi (p <0.05). Filtek Silorane kompozitin polimerizasyonu sırasında tüm modlar ve zaman aralıklarında Filtek Z550'ye kıyasla anlamlı derecede daha yüksek sıcaklık artışı görüldü (p <0.05). Sonuç: Polimerizasyon süresi arttıkça dentindeki ısı artışı pulpa sağlığını olumsuz etkileyebilir. Anahtar Kelimeler: Termal iletkenlik, dental komozit rezin, LED ışık cihazı, Polimerizasyon süresi 

___

  • 1. Uhl A, Volpel A, Sigusch BW. Influence of heat from light curing units and dental composite polymerization on cells in vitro. J Dent 2006; 34: 298-306.
  • 2. Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J 1999; 186: 388-91.
  • 3. Leung MK, Chang CC, Wu MH, Chuang KH, Lee JH, Shieh SJ, Lin SC, Chiu CF. 6-N,N-diphenylaminobenzofuran-derived pyran containing fluorescent dyes: a new class of high-brightness red-light-emitting dopants for OLED. Org Lett 2006, 8: 2623-6.
  • 4. Yondem I, Altintas SH, Usumez A. Temperature rise during resin composite polymerization under different ceramic restorations. Eur J Dent 2011; 5: 305-9.
  • 5. Dunn WJ, Taloumis LJ. Polymerization of orthodontic resin cement with light-emitting diode curing units. Am J Orthod Dentofac Orthop 2002; 122: 236-41.
  • 6. Karataş Ö, Türel V, İlday N, Seven N. Anterior mine hipoplazisinin kompozit restorasyonlarla tedavisi: İki olgu sunumu. J Dent Fac Atatürk Uni 2013; 22: 371-4.
  • 7. Nammour S, Zeinoun T, Bogaerts I, Lamy M, Geerts SO, Bou Saba S, Lamard L, Peremans A, Limme M. Evaluation of dental pulp temperature rise during photo-activated decontamination (PAD) of caries: an in vitro study. Lasers Med Sci 2010; 25: 651-4.
  • 8. Masutani S, Setcos JC, Schnell RJ, Phillips RW. Temperature rise during polymerization of visible light-activated composite resins. Dent Mater 1988; 4: 174-8.
  • 9. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997; 105: 97-116.
  • 10. Goodis HE, White JM, Andrews J, Watanabe LG. Measurement of temperature generated by visible-light-cure lamps in an in vitro model. Dent Mater 1989; 5: 230-4.
  • 11. Atai M, Motevasselian F. Temperature rise and degree of photopolymerization conversion of nanocomposites and conventional dental composites. Clin Oral Investig, 2009, 13: 309-316.
  • 12. Hussey DL, Biagioni PA, Lamey PJ. Thermographic measurement of temperature change during resin composite polymerization in vivo. J Dent 1995; 23: 267-71.
  • 13. Ilday NO, Sagsoz O, Karatas O, Bayindir YZ, Celik N. Temperature changes caused by light curing of fiber-reinforced composite resins. J Conserv Dent 2015; 18: 223-226.
  • 14. Karatas O, Turel V, Bayindir YZ. Temperature rise during polymerization of different cavity liners and composite resins. J Conserv Dent 2015; 18: 431-5.
  • 15. Horai KI, Simmons G, Kanamori H, Wones D. Thermal diffusivity and conductivity of lunar material. Science 1970, 167: 730-1.
  • 16. Guler C, Keles A, Guler MS, Karagoz S, Cora ON, Keskin G. Thermal conductivity of different colored compomers. J Appl Biomater Funct Mater 2017; 15: e362-8.
  • 17. Santos PJ, Silva MS, Alonso RC, D'Alpino PH. Hydrolytic degradation of silorane- and methacrylate-based composite restorations: Evaluation of push-out strength and marginal adaptation. Acta Odontol Scand 2013; 71: 1273-9.
  • 18. Mohammadi N, Shakur Shahabi M, Kimyai S, Pournagi Azar F, Ebrahimi Chaharom ME. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems. J Dent Res Dent Clin Dent Prospect 2015; 9: 181-7.
  • 19. Mahmoud SH, Al-Wakeel Eel S. Marginal adaptation of ormocer-, silorane-, and methacrylate-based composite restorative systems bonded to dentin cavities after water storage. Quintessence Int 2011; 42: e131-9.
  • 20. Little PA, Wood DJ, Bubb NL, Maskill SA, Mair LH, Youngson CC. Thermal conductivity through various restorative lining materials. J Dent 2005; 33: 585-91.
  • 21. Kul E, Aladag LI, Yesildal R. Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers. J Prosthet Dent 2016; 116: 803-10.
  • 22. Zach L, Cohen G. Pulp Response to Externally Applied Heat. Oral Surg Oral Med Oral Pathol 1965; 19: 515-30.
  • 23. Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999; 15: 275-81.
  • 24. Strang R, Patterson CJ, McLundie AC, Cummings A, Smail SR. In vitro temperature rises produced by five polymerising light sources. Restorative Dent 1988; 4: 33-5.
  • 25. Secilmis A, Bulbul M, Sari T, Usumez A. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Lasers Med Sci 2013; 28: 167-70.
  • 26. Aguiar FH, Barros GK, Lima DA, Ambrosano GM, Lovadino JR. Effect of composite resin polymerization modes on temperature rise in human dentin of different thicknesses: an in vitro study. Biomed Mater 2006; 1: 140-3.
  • 27. da Silva EM, Penelas AG, Simao MS, Filho JD, Poskus LT, Guimaraes JG. Influence of the degree of dentine mineralization on pulp chamber temperature increase during resin-based composite (RBC) light-activation. J Dent 2010; 38: 336-42.
  • 28. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater 2005; 21: 68-74.
  • 29. Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristic M. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil 2001; 28: 586-91.
  • 30. Miletic V, Ivanovic V, Dzeletovic B, Lezaja M. Temperature changes in silorane-, ormocer-, and dimethacrylate-based composites and pulp chamber roof during light-curing. J Esthet Restor Dent 2009; 21: 122-31.
  • 31. Mousavinasab SM, Khoroushi M, Moharreri M. Temperature rise during primer, adhesive, and composite resin photopolymerization of a low-shrinkage composite resin under caries-like dentin lesions. ISRN Dent 2012; 2012: 198351.
  • 32. Gao BT, Lin H, Zheng G, Xu YX, Yang JL. Comparison between a silorane-based composite and methacrylate-based composites: shrinkage characteristics, thermal properties, gel point and vitrification point. Dent Mater J 2012; 31: 76-85.
  • 33. Loney RW, Price RB. Temperature transmission of high-output light-curing units through dentin. Oper Dent 2001; 26: 516-20.
  • 34. Ozturk B, Ozturk AN, Usumez A, Usumez S, Ozer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent 2004; 29: 325-32.
  • 35. Nomoto R, McCabe JF, Hirano S. Comparison of halogen, plasma and LED curing units. Oper Dent 2004; 29: 287-294.
  • 36. Price RB, Ehrnford L, Andreou P, Felix CA. Comparison of quartz-tungsten-halogen, light-emitting diode, and plasma arc curing lights. J Adhes Dent 2003; 5: 193-207.