PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ

Deney hayvanları, araştırmalarda ve biyolojik testlerde ilaç, madde, tedavi gibi etkinliklerin, canlı organizmadaki sonuçlarının elde edilmesi için kullanılan hayvanlardır. Deney hayvanlarının bilimsel deneylerde kullanılmaya başlamasıyla birlikte araştırma verilerinin istenildiği kadar tekrarlanabildiği ve istenen koşullar da yeniden elde edilebildiği görülmüştür. Bu hayvanlar sağlık bilimleriyle ilgili birçok biyolojik testte kullanılabildiği gibi diş hekimliği araştırmalarında da sıklıkla kullanılmaktadır.  Hayvan çalışmaları periodontal araştırmalar için yeni tedavilerin denenmesi öncesinde tamamlayıcı özelliktedir. Hayvan modelleri hipotezlerin doğrulanmasını mümkün kılmalı ve yenilenen yaklaşımların güvenilirliğini ve etkinliğini ispatlamalıdır. Uygun hayvan modelinin seçimi periodonsiyumun ve hastalığın doğasının insanlardakine benzerliğine bağlıdır.  İnsanlardaki periodontitisi modellemek için; kemirgenler, köpekler, insan olmayan primatlar, tavşanlar gibi farklı türlerde birçok hayvan modeli kullanılmıştır. Ancak her deney hayvan modelinin kendine özgü avantaj ve dezavantajı bulunmaktadır. Her bir türün, farklı beslenmeleri, ömrü, doku yapısı, alışkanlıkları, genetik özellikleri ve konak savunma mekanizmaları olduğundan uygun deneysel modeli belirleyebilmek zorlaşabilmektedir. Araştırmacı deney hayvan modelini oluştururken planladığı çalışmaya uygun hayvanı ve defekt modelini seçebilecek bilgiye sahip olmalıdır. Çalışılacak hayvanın özellikleri dikkatle incelenmelidir. Bu derlemenin amacı periodontoloji alanındaki araştırmalar için en uygun hayvan ve hastalık modelini tanımlamaya yardımcı olmaktır. Anahtar Kelimeler: Deney hayvanları, hastalık modelleri, defekt modeli EXPERIMENTAL DISEASE AND ANIMAL MODELS IN PERIODONTOLOGY  ABSTRACT Experimental animals were used for obtaining results in living organisms of activities such as medication, substance and treatment in research and biologic tests. It is seen that research data as well as desired conditions can be repeated and obtained as much as required since the beginning of use of experimental animals in scientific experiments. While these animals can be used in many biologic tests related to health sciences, they are also frequently used in dental research. Animal studies are complementary before testing new therapies for periodontal investigations. Animal models should allow validation of hypothesis, and prove reliability and efficiency of new approaches. Selection of suitable animal model depends on similarity of nature of periodontium and the disease with those of human. Many animal models have been used in different species such as rodents, dogs, non-human primates, rabbits. However, each experimental animal model has specific advantages and disadvantages. Determining the suitable experimental model becomes difficult as each species has different nutrition, lifetime, tissue structures, habits, genetic features and host defense mechanisms. Researchers must have the adequate knowledge to select the suitable experimental animal and defect model. Characteristics of the animal to be studied should be carefully examined. The aim of this review is to help defining the most suitable animal and disease models for researches in periodontology. Key Words: Experimental animals, disease models, defect models

___

  • 1. Struillou X, Boutigny, H., Soueidan, A.,Layrolle, P. Experimental animal models in periodontology: a review. The Open Dentistry Journal 2010;4:37-47.
  • 2. Bhardwaj A, Bhardjaw, S. Contribution of animal models in periodontal research. IJAVMS 2012;6:150-157.
  • 3. Oz H. PD. Animal Models for Periodontal Disease. Journal of Biomedicine and Biotechnology 2011;2011:8.
  • 4. Kantarcı A. HH, Dyke T. Animal models for periodontal regeneration and peri-implant responses. Periodontology 2000 2015;68:68-82.
  • 5. Navia JM. Animal models in dental research. University, Ala.: University of Alabama Press.: 1977. p. 466.
  • 6. Guessous F, Huynh C, N'Guyen H, et al. An animal model for the assessment of gingival lesions. Journal of pharmacological and toxicological methods 1994;32:161-167.
  • 7. Craig RG, Kamer AR, Kallur SP, Inoue M, Tarnow DP. Effects of periodontal cell grafts and enamel matrix proteins on the implant-connective tissue interface: a pilot study in the minipig. The Journal of oral implantology 2006;32:228-236.
  • 8. Graves DT, Fine D, Teng YT, Van Dyke TE, Hajishengallis G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. Journal of clinical periodontology 2008;35:89-105.
  • 9. Yamasaki A, Nikai H, Niitani K, Ijuhin N. Ultrastructure of the junctional epithelium of germfree rat gingiva. Journal of periodontology 1979;50:641-648.
  • 10. Listgarten MA. Similarity of epithelial relationships in the gingiva of rat and man. Journal of periodontology 1975;46:677-680.
  • 11. Page RC, Schroeder HE. Periodontitis in man and other animals. A comparative review: S. karger; 1982.
  • 12. Arabaci T, Kermen E, Ozkanlar S, et al. Therapeutic Effects of Melatonin on Alveolar Bone Resorption After Experimental Periodontitis in Rats: A Biochemical and Immunohistochemical Study. Journal of periodontology 2015;86:874-881.
  • 13. Kose O, Arabaci T, Kara A, et al. Effects of Melatonin on Oxidative Stress Index and Alveolar Bone Loss in Diabetic Rats With Periodontitis. Journal of periodontology 2016;87:e82-90.
  • 14. Kose O, Arabaci T, Yemenoglu H, et al. Influences of Fucoxanthin on Alveolar Bone Resorption in Induced Periodontitis in Rat Molars. Marine drugs 2016;14.
  • 15. Klausen B. Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. Journal of periodontology 1991;62:59-73.
  • 16. Irving JT, Socransky SS, Heeley JD. Histological changes in experimental periodontal disease in gnotobiotic rats and conventional hamsters. Journal of periodontal research 1974;9:73-80.
  • 17. Baer PN, Stephan RM, White CL. Studies on Experimental Calculus Formation in the Rat I. Effect of Age, Sex, Strain, High Carbohydrate, High Protein Diets. Journal of periodontology 1961;32:190-196.
  • 18. Heijl L, Wennstrom J, Lindhe J, Socransky SS. Periodontal disease in gnotobiotic rats. Journal of periodontal research 1980;15:405-419.
  • 19. Weinberg M, Bral, M. Laboratory animal models in periodontology. Journal of clinical periodontology 1999;26:335-340.
  • 20. Huang KK, Shen C, Chiang CY, Hsieh YD, Fu E. Effects of bone morphogenetic protein-6 on periodontal wound healing in a fenestration defect of rats. Journal of periodontal research 2005;40:1-10.
  • 21. Nemcovsky CE, Zahavi S, Moses O, et al. Effect of enamel matrix protein derivative on healing of surgical supra-infrabony periodontal defects in the rat molar: a histomorphometric study. Journal of periodontology 2006;77:996-1002.
  • 22. Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T. Deproteinized bovine bone (Bio-Oss) and bioactive glass (Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration (GTR): an experimental study in the rat. Journal of clinical periodontology 2003;30:636-643.
  • 23. Donos N, Sculean A, Glavind L, Reich E, Karring T. Wound healing of degree III furcation involvements following guided tissue regeneration and/or Emdogain. A histologic study. Journal of clinical periodontology 2003;30:1061-1068.
  • 24. Donos N, Glavind L, Karring T, Sculean A. Clinical evaluation of an enamel matrix derivative in the treatment of mandibular degree II furcation involvement: a 36-month case series. International Journal of Periodontics & Restorative Dentistry 2003;23.
  • 25. Eggert FM, Germain JP, Cohen B. The gingival epithelium of rodent molars with limited eruption. Acta anatomica 1980;107:297-306.
  • 26. Lallam-Laroye C, Escartin Q, Zlowodzki AS, et al. Periodontitis destructions are restored by synthetic glycosaminoglycan mimetic. Journal of biomedical materials research Part A 2006;79:675-683.
  • 27. Baron R, Saffar J-L. A quantitative study of bone remodeling during experimental periodontal disease in the golden hamster. Journal of periodontal research 1978;13:309-315.
  • 28. Enwonwu CO. Interface of malnutrition and periodontal diseases. The American journal of clinical nutrition 1995;61:430S-436S.
  • 29. Kowashi Y, Jaccard F, Cimasoni G. Sulcular polymorphonuclear leucocytes and gingival exudate during experimental gingivitis in man. Journal of periodontal research 1980;15:151-158.
  • 30. Cutress TW. Histopathology of periodontal disease in sheep. Journal of periodontology 1976;47:643-650.
  • 31. Tyrrell KL, Citron DM, Jenkins JR, Goldstein EJ. Periodontal bacteria in rabbit mandibular and maxillary abscesses. Journal of clinical microbiology 2002;40:1044-1047.
  • 32. Aaboe M, Pinholt EM, Hjorting-Hansen E. Unicortical critical size defect of rabbit tibia is larger than 8 mm. The Journal of craniofacial surgery 1994;5:201-203.
  • 33. Schmitt JM, Buck DC, Joh SP, Lynch SE, Hollinger JO. Comparison of porous bone mineral and biologically active glass in critical-sized defects. Journal of periodontology 1997;68:1043-1053.
  • 34. Oortgiesen DA, Meijer GJ, Bronckers AL, Walboomers XF, Jansen JA. Fenestration defects in the rabbit jaw: an inadequate model for studying periodontal regeneration. Tissue engineering Part C, Methods 2010;16:133-140.
  • 35. Takahashi D, Odajima T, Morita M, Kawanami M, Kato H. Formation and resolution of ankylosis under application of recombinant human bone morphogenetic protein-2 (rhBMP-2) to class III furcation defects in cats. Journal of periodontal research 2005;40:299-305.
  • 36. Anthony J, Waldner C, Grier C, Laycock AR. A survey of equine oral pathology. Journal of veterinary dentistry 2010;27:12-15.
  • 37. Schliephake H, Aleyt J. Mandibular onlay grafting using prefabricated bone grafts with primary implant placement: an experimental study in minipigs. The International journal of oral & maxillofacial implants 1998;13:384-393.
  • 38. Romanos GE, Henze M, Banihashemi S, Parsanejad HR, Winckler J, Nentwig GH. Removal of epithelium in periodontal pockets following diode (980 nm) laser application in the animal model: an in vitro study. Photomedicine and laser surgery 2004;22:177-183.
  • 39. Zhang Y, Miron RJ, Li S, Shi B, Sculean A, Cheng X. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. Journal of clinical periodontology 2015;42:262-271.
  • 40. Gu XQ, Li YM, Guo J, Zhang LH, Li D, Gai XD. Effect of low intensity pulsed ultrasound on repairing the periodontal bone of Beagle canines. Asian Pacific journal of tropical medicine 2014;7:325-328.
  • 41. Nagayasu-Tanaka T, Anzai J, Takaki S, et al. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs. PloS one 2015;10:e0131870.
  • 42. Huang Z, Wang Z, Li C, Yin K, Hao D, Lan J. Application of Plasma Sprayed Zirconia Coating in Dental Implant: Study in Implant. The Journal of oral implantology 2018.
  • 43. Jing D, Yan Z, Cai J, et al. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 2018;106:11-21.
  • 44. Pforringer D, Harrasser N, Muhlhofer H, et al. Osteoinduction and -conduction through absorbable bone substitute materials based on calcium sulfate: in vivo biological behavior in a rabbit model. Journal of materials science Materials in medicine 2018;29:17.
  • 45. Johnson-Delaney CA. Anatomy and Disorders of the Oral Cavity of Ferrets and Other Exotic Companion Carnivores. The veterinary clinics of North America Exotic animal practice 2016;19:901-928.
  • 46. Triantafyllou A, Harrison JD, Garrett JR. Microliths in the parotid of ferret investigated by electron microscopy and microanalysis. International journal of experimental pathology 2009;90:439-447.
  • 47. Chen CK, Chang NJ, Wu YT, et al. Bone Formation Using Cross-Linked Chitosan Scaffolds in Rat Calvarial Defects. European journal of oral sciences 2018;27:15-21.
  • 48. Wang S, Noda K, Yang Y, Shen Z, Chen Z, Ogata Y. Calcium hydroxide regulates transcription of the bone sialoprotein gene via a calcium-sensing receptor in osteoblast-like ROS 17/2.8 cells. 2018;126:13-23.
  • 49. Fernandes LA, Martins TM, de Almeida JM, Theodoro LH, Garcia VG. Radiographic assessment of photodynamic therapy as an adjunctive treatment on induced periodontitis in immunosuppressed rats. Journal of applied oral science : revista FOB 2010;18:237-243.
  • 50. Matheus HR, Ervolino E, Faleiros PL, et al. Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: An in vivo study in rats. 2018;45:241-252.
  • 51. Matys J, Flieger R, Dominiak M. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2017;26:687-693.
  • 52. Johansson P, Barkarmo S, Hawthan M, Peruzzi N, Kjellin P, Wennerberg A. Biomechanical, histological and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. Journal of biomedical materials research Part A 2018.
  • 53. Ademhan O. KS, Cetiner S. Biomechnical comprasion of stresses generated through two different dental implants designs to be applied in augmented maxillary sinus. Atatürk Üniv. Diş Hek. Fak. Derg.2017;27:154-160.
  • 54. AlFarraj AA, Sukumaran A, Al Amri MD, Van Oirschot AB, Jansen JA. Erratum to: A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles. Odontology 2018;106:45.
  • 55. Kurkcuoglu I. KA, Ozkır S. Dental implantlarda başarı kriterleri ve başarı değerlendirme yöntemleri. Atatürk Üniv. Diş Hek. Fak. Derg.2010;20.
  • 56. H. Y. Periodontoloji Alanında Hayvan Çalışmaları: Deneysel Periodontal ve Periimplant Hastalığın İndüksiyonu Cumhuriyet Dental Journal 2016;20:62-71.
  • 57. Kim HS, Lee JI, Yang SS, Kim BS, Kim BC, Lee J. The effect of alendronate soaking and ultraviolet treatment on bone-implant interface. Clinical oral implants research 2017;28:1164-1172.
  • 58. Cakir M. KI. İmplant uygulamaları için kret koruma teknikleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2015;25:107-118.
Current Research in Dental Sciences-Cover
  • Başlangıç: 1986
  • Yayıncı: Atatürk Üniversitesi
Sayıdaki Diğer Makaleler

BUKKAL MUKOZADA İZLENEN FİBROLİPOM VAKASI VE LİTERATÜR DERLEMESİ

Muhsin Said KARATAŞ, İlkay PEKER, Basma AZNAD, Öykü ÖZTÜRK, Cemile Özlem ÜÇOK

TEMPOROMANDİBULAR EKLEM AĞRISININ MİGREN, OTOLOJİK SEMPTOMLAR, BAŞ DÖNMESİ VE BOYUN/OMUZ AĞRISI İLE İLİŞKİSİNİN RETROSPEKTİF OLARAK DEĞERLENDİRİLMESİ

Zeynep GÜMRÜKÇÜ, Emre BALABAN, Mert KARABAĞ, Emine DEMİR

FARKLI NANOPARTİKÜLLERLE GÜÇLENDİRİLEN MİKRODALGA ENERJİSİ İLE POLİMERİZE OLAN AKRİLİK REZİNİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ

Muhammet KARCI, Necla DEMİR, Şakir YAZMAN

KISA İMPLANTLARIN 19 AYLIK GERİYE DÖNÜK KLİNİK BAŞARILARININ DEĞERLENDİRİLMESİ

İşıl Damla ŞENER YAMANER

MAKSİLLADA AÇILI İMPLANTLAR KULLANILARAK YAPILAN İMMEDİAT YÜKLEMENİN KISA DÖNEM SONUÇLARI

Muzaffer ASLAN

ATATÜRK ÜNİVERSİTESİ DİŞ HEKİMLİĞİ FAKÜLTESİ KLİNİK VE LABORATUVARLARINDA ORTAK KULLANIM ALANLARININ MİKROBİYOLOJİK DEĞERLENDİRİLMESİ

Esra KUL, Nezihat GÜNEŞ, Hakan USLU

BİLGİSAYAR DESTEKLİ TASARIM-BİLGİSAYAR DESTEKLİ ÜRETİM SİSTEMLERİNİN FARKLI DENTAL RESTORASYONLARIN KENAR VE İÇ YÜZEY UYUMLARINA ETKİSİNİN DEĞERLENDİRİLMESİ: İN-VİTRO ÇALIŞMA

Merve BENLİ, Bilge GÖKÇEN-ROHLİG

FARKLI İÇECEKLER İLE RENKLENDİRİLMİŞ REZİN NANO SERAMİKLER VE NANO HİBRİT KOMPOZİT REZİNLERİN RENK STABİLİTESİNE BEYAZLATICI AĞIZ GARGARALARININ ETKİSİ

İşıl Damla ŞENER YAMANER

DENTİNİN BİYOMİMETİK REMİNERALİZASYONU

Zeynep Aslı GÜÇLÜ ÖZKAYA, Zekiye HİDAYET

FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ

Merve İŞCAN YAPAR, Neslihan ÇELİK, Ömer SAĞSÖZ, Buket KARALAR, Nilgün SEVEN, Yusuf Ziya BAYINDIR