KONİK IŞINLI BİLGİSAYARLI TOMOGRAFİ KULLANILARAK İNFRAORBİTAL KANAL VE SULKUSUN RETROSPEKTİF OLARAK İNCELENMESİ
Amaç:
Bu çalışmanın amacı infraorbital kanal
(İOK) ve infraorbital sulkusun (İOS) anatomik lokalizasyonunun konik ışınlı
bilgisayarlı tomografi (KIBT) kullanılarak incelenmesidir. Materyal
ve Metot: Çalışmamızda
125 hastanın KIBT görüntüleri retrospektif olarak incelenerek İOK ve İOS’nin
anatomik özellikleri belirlendi.Bulgular: İOK uzunluğu 11.73 ± 1.90 mm, İOS uzunluğu 16.15 ± 2.90
mm, ikisi arasındaki açı 154.3 ± 8.57° ve kanalın doğrultusunun horizontal
düzlem ile yaptığı açı 41.02 ± 7.60° ölçüldü.Sonuç:
Bu çalışma KIBT’nin cerrahi olarak
önem taşıyan anatomik noktaların mesafelerini belirleyerek maksillofasiyal
cerrahi sırasında nörovasküler yapıların hasar görmesinin önlenmesi, lokal
anestezi uygulamaları ve diğer invaziv işlemler için yol gösterici
olabileceğini ortaya koyuyor.Anahtar
Kelimeler: Konik ışınlı bilgisayarlı
tomografi, infraorbital kanal,
infraorbital sulkus
RETROSPECTIVE MORPHOMETRIC
ANALYSIS OF THE INFRAORBITAL CANAL AND INFRAORBITAL SULCUS WITH CONE BEAM
COMPUTED TOMOGRAPHY
ABSTRACT
Aim: The aim of our study is to evaluate of anatomical localization of
infraorbital foramen, canal and sulcus by using cone beam computed tomography.
Material and Method: In this descriptive study, cone beam computed
tomography images of 125 patients were retrospectively analyzed. Infraorbital
canal and sulcus’s anatomic variation are determined.
Results: The average length of infraorbital canal was 11.73 ±
1.90 mm, infraorbital sulcus was 16.15±2.90 mm, the angle between two of them
was 154.3 ± 8.57° and the angle between the horizontal plane and the direction
of the channel was 41.02 ± 7.60°.
Conclusion: This study suggests that cone beam computed tomography
may lead the way for prevention of damage to neurovascular structures during
maxillofacial surgery by determining the distance of surgically important
anatomical landmarks, local anesthesia practices and other invasive procedures.Key
Words: Cone beam computed tomography,
infraorbital canal, infraorbital sulcus
___
- 1. Drake RL, Vogl W, Mitchell AWM. Gray's anatomy for students.Yıldırım M (çev. ed). Ankara. 2007; 8: 822-94.
- 2. Hu KS, Kwak J, Koh KS, Abe S, Fontaine C, Kim HJ. Topographic distribution area of the infraorbital nerve. Surg Radiol Anat 2007;29:383-8.
- 3. Mozsary PG, Middleton RA. Microsurgical reconstruction of the infraorbital nerves. J Oral Maxillofac Surg 1983;4:697-700.
- 4. Kazkayasi M, Ergin A, Ersoy M, Bengi O, Tekdemir I, Elhan A. Certain anatomical relations and the precise morphometry of the infraorbital foramen--canal and groove: an anatomical and cepha- lometric study. Laryngoscope 2001;111:609-14.
- 5. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. Am J Neuroradiol 2009;30:1285-92.
- 6. Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol 2004;33:291-4.
- 7. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP. Accuracy of three-dimensional measurements using cone-beam CT. Dentomaxillofac Radiol 2006;35:410-6.
- 8. Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol 2008;37:10-7.
- 9. Cattaneo PM, Bloch CB, Calmar D, Hjortshoj M, Melsen B. Comparison between conventional and cone beam computed tomography generated cephalograms. Am J Orthod Dentofacial Orthop 2008;134:798-802.
- 10. Aktan AM, Gungor E, Çiftçi ME, İsman Ö. Diş hekimliğinde konik ışınlı bilgisayarlı tomografi kullanımı. AÜ Diş Hek Fak Derg 2015; 25:71-6.
- 11. Orhan K, Mısırlı M, Aksoy S, Seki U, Hincal E, Örmeci T, Arslan. Morphometric analysis of the infraorbital foramen, canal and Groove using cone beam CT: considerations for creating artificial organs. Int J Artif Organs 2016; 39: 28-36.
- 12. Lee UY, Nam SH, Han SH, Choi KN, Kim TJ. Morphological characteristics of the infraorbital foramen and infraorbital canal using three-dimensional models. Surg Radiol Anat 2006;28:115-20.
- 13. Przygocka A, Szymanski J, Jakubczyk E, Jedrzejewski K, Topol M, Polguj M. Variations in the topography of the infraorbital canal/groove complex: a proposal for classification and its potential usefulness in orbital floor surgery. Folia Morphologica (Warsz) 2013;72:311-7.
- 14. Apinhasmit W, Chompoopong S, Methathrathip D, Sansuk R, Phetphunphiphat W. Supraorbital notch/foramen, ınfraorbital foramen and mental foramen in thais: anthropometric measurements and surgical relevance. J Med Assoc Thailand 2006;89:675-82.
- 15. Xu H, Guo Y, Lv D, Guo J, Liu W Qi, H,Qin J, Wang Z, Hou L, Zhang Y, Gao L, Li Y, Wang Y. Morphological structure of the infraorbital canal using three-dimensional reconstruction. J Craniofal Surg 2012;23:1166-8.
- 16. Hwang SH, Kim SW, Park CS, Cho JH, Kang JM. Morphometric analysis of the infraorbital groove, canal, and foramen on three-dimensional reconstruction of computed tomography scans. Surg Radiol Anat 2013;35:565-71.
- 17. Rahman M, Richter EO, Osawa S, Rhoton AL, Jr. Anatomic study of the infraorbital foramen for radiofrequency neurotomy of the infraorbital nerve. Neurosurgery 2009;64:423-38.
- 18. Caspersen LM, Christensen IJ, Kjaer I. Inclination of the infraorbital canal studied on dry skulls expresses the maxillary growth pattern: a new contribution to the understanding of change in inclination of ectopic canines during puberty. Acta Odontolog Scand 2009;67:341-5.
- 19. Ülgen PDM. Ortodonti, Anomaliler, Sefalometri, Etioloji, Büyüme ve Gelişim, Tanı. Yeditepe Üniv Yayınları 2000:213-308.