KONİK IŞINLI BİLGİSAYARLI TOMOGRAFİ KULLANILARAK İNFRAORBİTAL KANAL VE SULKUSUN RETROSPEKTİF OLARAK İNCELENMESİ

Amaç: Bu çalışmanın amacı infraorbital kanal (İOK) ve infraorbital sulkusun (İOS) anatomik lokalizasyonunun konik ışınlı bilgisayarlı tomografi (KIBT) kullanılarak incelenmesidir.  Materyal ve Metot: Çalışmamızda 125 hastanın KIBT görüntüleri retrospektif olarak incelenerek İOK ve İOS’nin anatomik özellikleri belirlendi.Bulgular: İOK uzunluğu 11.73 ± 1.90 mm, İOS uzunluğu 16.15 ± 2.90 mm, ikisi arasındaki açı 154.3 ± 8.57° ve kanalın doğrultusunun horizontal düzlem ile yaptığı açı 41.02 ± 7.60° ölçüldü.Sonuç: Bu çalışma KIBT’nin cerrahi olarak önem taşıyan anatomik noktaların mesafelerini belirleyerek maksillofasiyal cerrahi sırasında nörovasküler yapıların hasar görmesinin önlenmesi, lokal anestezi uygulamaları ve diğer invaziv işlemler için yol gösterici olabileceğini ortaya koyuyor.Anahtar Kelimeler: Konik ışınlı bilgisayarlı tomografi, infraorbital kanal,  infraorbital sulkus  RETROSPECTIVE MORPHOMETRIC ANALYSIS OF THE INFRAORBITAL CANAL AND INFRAORBITAL SULCUS WITH CONE BEAM COMPUTED TOMOGRAPHY ABSTRACT   Aim: The aim of our study is to evaluate of anatomical localization of infraorbital foramen, canal and sulcus by using cone beam computed tomography. Material and Method: In this descriptive study, cone beam computed tomography images of 125 patients were retrospectively analyzed. Infraorbital canal and sulcus’s anatomic variation are determined. Results: The average length of infraorbital canal was 11.73 ± 1.90 mm, infraorbital sulcus was 16.15±2.90 mm, the angle between two of them was 154.3 ± 8.57° and the angle between the horizontal plane and the direction of the channel was 41.02 ± 7.60°. Conclusion: This study suggests that cone beam computed tomography may lead the way for prevention of damage to neurovascular structures during maxillofacial surgery by determining the distance of surgically important anatomical landmarks, local anesthesia practices and other invasive procedures.Key Words: Cone beam computed tomography, infraorbital canal, infraorbital sulcus

___

  • 1. Drake RL, Vogl W, Mitchell AWM. Gray's anatomy for students.Yıldırım M (çev. ed). Ankara. 2007; 8: 822-94.
  • 2. Hu KS, Kwak J, Koh KS, Abe S, Fontaine C, Kim HJ. Topographic distribution area of the infraorbital nerve. Surg Radiol Anat 2007;29:383-8.
  • 3. Mozsary PG, Middleton RA. Microsurgical reconstruction of the infraorbital nerves. J Oral Maxillofac Surg 1983;4:697-700.
  • 4. Kazkayasi M, Ergin A, Ersoy M, Bengi O, Tekdemir I, Elhan A. Certain anatomical relations and the precise morphometry of the infraorbital foramen--canal and groove: an anatomical and cepha- lometric study. Laryngoscope 2001;111:609-14.
  • 5. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. Am J Neuroradiol 2009;30:1285-92.
  • 6. Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol 2004;33:291-4.
  • 7. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP. Accuracy of three-dimensional measurements using cone-beam CT. Dentomaxillofac Radiol 2006;35:410-6.
  • 8. Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol 2008;37:10-7.
  • 9. Cattaneo PM, Bloch CB, Calmar D, Hjortshoj M, Melsen B. Comparison between conventional and cone beam computed tomography generated cephalograms. Am J Orthod Dentofacial Orthop 2008;134:798-802.
  • 10. Aktan AM, Gungor E, Çiftçi ME, İsman Ö. Diş hekimliğinde konik ışınlı bilgisayarlı tomografi kullanımı. AÜ Diş Hek Fak Derg 2015; 25:71-6.
  • 11. Orhan K, Mısırlı M, Aksoy S, Seki U, Hincal E, Örmeci T, Arslan. Morphometric analysis of the infraorbital foramen, canal and Groove using cone beam CT: considerations for creating artificial organs. Int J Artif Organs 2016; 39: 28-36.
  • 12. Lee UY, Nam SH, Han SH, Choi KN, Kim TJ. Morphological characteristics of the infraorbital foramen and infraorbital canal using three-dimensional models. Surg Radiol Anat 2006;28:115-20.
  • 13. Przygocka A, Szymanski J, Jakubczyk E, Jedrzejewski K, Topol M, Polguj M. Variations in the topography of the infraorbital canal/groove complex: a proposal for classification and its potential usefulness in orbital floor surgery. Folia Morphologica (Warsz) 2013;72:311-7.
  • 14. Apinhasmit W, Chompoopong S, Methathrathip D, Sansuk R, Phetphunphiphat W. Supraorbital notch/foramen, ınfraorbital foramen and mental foramen in thais: anthropometric measurements and surgical relevance. J Med Assoc Thailand 2006;89:675-82.
  • 15. Xu H, Guo Y, Lv D, Guo J, Liu W Qi, H,Qin J, Wang Z, Hou L, Zhang Y, Gao L, Li Y, Wang Y. Morphological structure of the infraorbital canal using three-dimensional reconstruction. J Craniofal Surg 2012;23:1166-8.
  • 16. Hwang SH, Kim SW, Park CS, Cho JH, Kang JM. Morphometric analysis of the infraorbital groove, canal, and foramen on three-dimensional reconstruction of computed tomography scans. Surg Radiol Anat 2013;35:565-71.
  • 17. Rahman M, Richter EO, Osawa S, Rhoton AL, Jr. Anatomic study of the infraorbital foramen for radiofrequency neurotomy of the infraorbital nerve. Neurosurgery 2009;64:423-38.
  • 18. Caspersen LM, Christensen IJ, Kjaer I. Inclination of the infraorbital canal studied on dry skulls expresses the maxillary growth pattern: a new contribution to the understanding of change in inclination of ectopic canines during puberty. Acta Odontolog Scand 2009;67:341-5.
  • 19. Ülgen PDM. Ortodonti, Anomaliler, Sefalometri, Etioloji, Büyüme ve Gelişim, Tanı. Yeditepe Üniv Yayınları 2000:213-308.