FİBERLE GÜÇLENDİRMENİN NANOFİL KOMPOZİTİN EĞME DİRENCİNE ETKİSİNİN İNCELENMESİ

Amaç: Bu in vitro çalışmanın amacı; fiberle güçlendirmenin, nanofil kompozit materyalinin eğme direncine etkisinin araştırılmasıdır.Materyal ve Metod: Eğme direnci testi için ISO 4049 standartlarına uygun hazırlanan standart bir metal kalıp (2 ×2 ×25 mm) kullanılarak 60 örnek ha- zırlandı. Örnekler dört çalışma grubuna ayrıldı (n:15). Akışkan Kompozit (Filtek Flow)+Nanofil Kompozit (Fil- tek Supreme)  (Grup I), Nanofil Kompozit (Kontrol) (Grup II), Akışkan Kompozit+Örgü Cam Fiber (Ever- Stick Net)+Nanofil Kompozit (Grup III), Örgü Cam Fiber+Nanofil Kompozit (Grup IV). Örnekler 24 saat 370 C de distile suda bekletildi. Daha sonra Universal Test cihazı ile üç nokta eğilme testine tabi tutuldu. Veriler istatistiksel olarak Kruskall Vallis ve Mann Whitney U testi kullanılarak analiz edildi. Her gruba ait üç örnek, taramalı elektron mikroskobunda (SEM) incelendi. Bulgular: Ortalama eğme direnci değerleri ve standart sapmaları Grup I, II, III ve IV de sırasıyla 93.6±4, 85.5±6, 107±9 ve 101±5 bulundu. Diğer gruplarla karşılaştırıldığında kontrol grubunun (Gr II) en düşük değere sahip olduğu belirlenirken en yüksek eğme direncinin akışkan kompozit ile beraber fiber uy- gulanan nanofil kompozit grubunda olduğu gözlendi (p<0.05). Kontrol grubu ile diğer gruplar arasında eğ- me direnci değerlerinin anlamlı bir farklılık gösterdiği belirlendi (p<0.05). Örnekler SEM ile incelendiğinde, fiber ile güçlendirilmiş gruplarda (GR III ve IV) meyda- na gelen kırılmanın gerilim bölgesine yerleştirilen fiberle sınırlı kaldığı saptandı.Sonuç: Bu in vitro çalışmanın sınırları içinde cam fiberle güçlendirmenin, nanofil kompozitin eğme direncini arttırdığı sonucuna varıldı. Örneklerde kırılma- nın, gerilim bölgesinde fiberle sınırlı kaldığı; cam fibe- rin kırık stoperi olarak işlev yaptığı sonucuna varıldı.

EFFECT OF FIBER REINFORCEMENT ON THE FLEXURE STRENGTH OF NANOFILLED-RESIN COMPOSITE

Aim: The purpose of this in vitro study was to investigate the effect of woven glass fiber layering on flexural strength of nanofil composite resin. Material and Method: Sixty specimens were prepared standard metallic mold (25x2x2 mm) prepared according to ISO 4049 for flexural strength. The specimens were divided into four groups (n: 15) as follows; Flowable (Filtek Flow) + nanofil composite (Filtek Supreme) (Gr I), nanofil composite (Gr II), Flowable +woven glass fiber (EverStick Net) + nanofil composite (Gr III), woven glass fiber + nanofil composite (Gr IV).The specimens were stored in distilled water at 370 C for 24 hour, thenevaluated with three-point bending test using Universal Testing Machine. Data were analysed using Kruskall Wallis and Mann Whitney U tests. Three samples from each group were examined by SEM. Result:The mean flexural strength values of the groups I, II, III and IV were 93.6±4, 85.5±6, 107±9 and 101±5 respectively. Glass fiber-reinforced nanofil composite applied with flowable composite (Gr III) exhibited higher flexural strength values in comparison to the other groups (p<0.05 While control group (Gr II) exhibited the lowest). Significant differences were found between flexural strength of control and the other groups (p<0.05). In SEM evaluation, it was detected that in fiber-reinforced groups (Groups III and IV) fractured area was limited by the fiber in the stressed region. Conclusion: Within the limitations of this in vitro study it is concluded that glass fiber reinforcement improves the flexural strength of the nanofill composite. In SEM evaluation after fracturing, glassfiber reinforcement prevented crack propagation. Key Words: Composite resin, fiberreinforcement, flexural strength, scanning electron microscope

___

  • Manhart J, Chen HY, Hamm G, Hickel R. Review of the Survival of Direct and Indirect Restorations In Posterior Teeth of the Permanent Dentition. Operative Dentistry 2004; 29:481-508.
  • Ferracane JL. Resin Composite-State of the Art. Dental Materials 2011; 27: 29-38.
  • Beun S, Glorieux T, Devaux J, Vreven J, Leloup G. Characterization of Nanofilled Compared to Universal and Microfilled Composites. Dental Materials 2007; 23: 51-9.
  • Mitra SB, Wu D, Holmes HB. An Application of Nanotechnology in Advanced Dental Materials. Journal of American Dental Association 2003; 134: 1382-90.
  • Chen MH. Update on Dental Nanocomposites. J Dent Res 2010; 89: 549-60.
  • Butterworth, C., Ellakwa, A.E, Shortall, A. Fibre- Reinforced Composites in Restorative Dentistry. Dent Update 2003; 30:300-8.
  • Freilich MA, Meiers JC, Duncan JP, Goldberg AJ. Fiber-Reinforced Composites in Clinical Dentistry. Chicago, Berlin, London, Tokyo; Quintessence Publishing Co, Inc: 2000. p. 9-22.
  • Aydın C, Yılmaz H, Korkmaz T, Atlı Y,Zan T. Değişik Kron Köprü Veneer Materyallerinin Sertliklerinin İncelenmesi. Cumhuriyet Üniv Diş Hek Fak Derg 1998;12:46-53.
  • Yılmaz H, Aydın C. Akrilik Rezinlerin Güçlendirme Teknikleri. Atatürk Üniv Diş Hek Fak Derg 2002;12:46-53.
  • Garoushi S, Lippo VJ, Tezvergil A, Vallittu PK. Load Bearing Capacity of Fiber-Reinforced and Particulate Filler Composite Resin Combination. Journal of Dentistry 2006; 34:179-84.
  • Pereira, CL, Demarco FF, Cenci MS, Osinaga PWR, Piovesan EM. Flexural Strength of Composites: Influence of Polyethylene Fiber Reinforcement and Type of Composite, Clin Oral Invest 2003;7:116-9.
  • Freilich MA, Karmaker AC, Burstone CJ, Goldberg AJ. Development and Clinical Applications of a Light- Polymerized Fiber-Reinforced Composite. J Prosthet Dent 1998; 80:311-8.
  • Xu HHK, Quinn JB, Smith DT, Guiseppetti AA. Effect of Different Whiskers On The Reinforcement of Dental Resin Composites. Dent Mater 2003; 19:359-67.
  • Kanie T, Arikawa H, Fuji K, Ban S. Mechanical Properties of Reinforced Denture Base Resin: The Effect of Position and The Number of Woven Glass Fibers. Dent Mater J 2002;21:261-9.
  • Van Dijken JWV, Sunnegardh-Grönberg K. Fiber- Reinforced Packable Resin Composites in Class II Cavities. Journal of Dentistry 2006;34: 763-9.
  • Goldberg, AJ. Freilich MA.. An Innovative Pre- Impregnated Composites. Dent Clin North Am 1999;43:127-33.
  • Freilich MA, Karmaker AC, Burstone CJ, Goldberg AJ. Development and Clinical Applications of A Light-Polymerized Fiber-Reinforced Composite. J Prosthet Dent 1998;80:311-8.
  • Fennis WMM, Tezvergil A, Kuijs RH, Lassila LVJ, Kreulen CM, Creugers NHJ, Valittu PK. In Vitro Fracture Resistance of Fiber Reinforced Cusp- Replacing Materials 2005;21:565-72. Restorations. Dental
  • Vallittu PK. Compositional and Weave Pattern Analyses of Glass Fibers in Dental Polymer Fiber Composites. J Prosthodont 1998 7:170-6.
  • Lastumaki TM, Lassila LV, Vallittu PK. The semi- Interpenetrating Polymer Network Matrix of Fiber- Reinforced composite and Its Effect on The Surface Adhesive Properties. J Mater Science Mater Med 2003;14:803-9.
  • Lassila LVJ, Vallittu PK. The Effect of Fiber Position and Polymerization Condition on The Flexural Properties Of Fiber-Reinforced Composites. J Contemp Dent Pract 2004;5:14-26.
  • Ellakwa AE, Shortall AC, Marquis PM. Influence of Fibre Type and Wetting Agent on The Flexural Properties Of An Indirect Fibre-Reinforced Composite. J Prosthet Dent 2002;88:485-90.
  • Dyer S, Lassila LV, Jokinen M, Valittu PK. Effect of Fiber Position and Orientation on Fracture Load of Fiber-Reinforced Composite. Dent Mater 2004;20: 947-55.
  • Chen Stefanski S, Van Dijken JWV. Clinical Performance of A Nanofilled Resin Composite With and Without an Intermediary Layer of Flowable Composite: A 2- Year Evaluation. Clinical Oral Investigations 2010; 10:119-25.
  • Efes BG, Dörter C, Gömeç Y, Koray F. Two Year Clinical Evaluation of Ormocer and Nanofill Composite With and Without a Flowable Liner. Journal of Adhesive Dentistry 2006;8 119-26.
  • Unterbrink GL, Liebenberg WH. The Effect of Flowable Resin Composite on Microleakage and Internal Voids in Class II Composite Restorations. Operative Dentistry 2004; 29:713-9.
  • Ernst CP, Canbek K, Aksogan K, Willerhausen B. Two Year Clinical Performance of Packable Posterior Composite With and Without a Flowable Composite Liner. Clinical Oral Investigations 2003; 7:129-34.
  • International Standardization Organization (ISO) Dentistry- Resin-Based Filling Materials. Geneva: (2 nd ed.) ISO 4049. 1988.p. 6-8.
  • Chung SM, Yap AUJ, Chandra SP, Lim CT. Flexural Strength of Dental Composite Restoratives: Comparison of Biaxial and Three-Point Bending Test. J Biomed Mater Res 2004; 71:278-83.
  • Attar N, Çiftçi Y. A Comparison of the Flexural Strength and Elastic Modulus of Condensable and Hybrid Composite Resins. Hacettepe Diş Hek Fak Derg 2006;30:42-50.
  • Chung K, Lin T, Wang F. Flexural Strength of a Provisional Resin Material with Fibre Addition. J Oral Rehabil 1998;25:214-7.
  • Bae JM, Kim M, Hattori M, Hasegawa K, Yoshinari M, Kawada E. The Flexural Properties of Fiber- Reinforced Composites With Light-Polymerized Matrix Int J Prosthod 2001;14: 33-9.