Comparison of Microleakage and Fracture Strength of Veneering Techniques for Polyetheretherketone Cores

Comparison of Microleakage and Fracture Strength of Veneering Techniques for Polyetheretherketone Cores

ABSTRACT Objective: This study aimed to compare both microleakage and fracture strengths of polyetheret- herketone crowns manufactured via conventional composite layering and different computer-a- ided design and computer-aided manufacturing veneering techniques on polyetheretherketone cores. Materials and Methods: In total, 40 cores with 0.7-mm thickness were milled from polyethe- retherketone discs and separated into 4 groups: layering with composite resin, computer-aided design and computer-aided manufacturing-fabricated lithium disilicate veneer, computer-aided design and computer-aided manufacturing-fabricated hybrid ceramic veneer, and computer-a- ided design and computer-aided manufacturing-fabricated feldspathic veneer. Then, all cores were air abraded and an adhesive has applied to these surfaces. After the cores were connected to veneers, thermomechanical aging was applied in a chewing simulator. Evaluation of microlea- kage and fracture strength was performed via micro-computed tomography analysis and univer- sal test machine, respectively. One-way analysis of variance was used to detect any statistically significant differences between test groups. Also, failure modes and the correlation between mic- roleakage and fracture strength data were analyzed statistically. Results: Statistical analyses between the groups showed significant differences for both micro- leakage and fracture strength values. The lowest microleakage was in the computer-aided design and computer-aided manufacturing-fabricated hybrid ceramic veneer group (0.02 ± 0.01 mm3). The highest microleakage was in the layering with composite resin group (0.56 ± 0.21 mm3). The lowest fracture strength values were in the computer-aided design and computer-aided manuf acturing-fabricated feldspathic veneer group (620.58 ± 114.02 N). The highest fracture strength was in the computer-aided design and computer-aided manufacturing-fabricated lithium disili- cate veneer group (1245.82 ± 197.75 N). Also, there was no correlation between the microleakage and fracture strength groups. Conclusion: The use of computer-aided design and computer-aided manufacturing-fabricated lithium disilicate and hybrid ceramic veneers can be an alternative to layering when its other advantages are considered. Keywords: Polyetheretherketone, digital veneering, microleakage, fracture strength, adhesive dentistry, dental technology ÖZ Amaç: Bu çalışma, PEEK altyapı üzerinde geleneksel kompozit katmanlama ve farklı CAD/CAM veneerleme teknikleri ile üretilen polietereterketon (PEEK) kronların hem mikrosızıntı hem de kırılma dayanımlarını karşılaştırmayı amaçlamıştır. Gereç ve Yöntemler: PEEK disklerinden toplamda 0,7 mm kalınlığında hazırlanan 40 altyapı örnek dört gruba ayrılmıştır: LCR; Kompozit reçine, LDV, CAD/CAM fabrikasyon lityum disilikat kaplama, HCV ile katmanlama; CAD/CAM tarafından üretilmiş hibrit seramik kaplama ve FFV; CAD/CAM fabrikasyon feldspatik kaplama. Daha sonra tüm örnekler hava ile tozlama sayesinde pürüzlendirilmiş ve bu yüzeylere adeziv uygulanmıştır. Kor örnekler veneer üst yapılara bağlandıktan sonra çiğneme simülatöründe termomekanik yaşlandırma uygulanmıştır. Mikrosızıntı ve kırılma dayanımının değerlendirilmesi sırasıyla mikro-CT analizi ve üniversal test cihazı ile yapılmıştır. Test grupları arasında istatistiksel olarak anlamlı farklılıkları tespit etmek için tek yönlü ANOVA kullanılmıştır. Ayrıca, kırılma paternleri ve mikrosızıntı ile kırılma dayanım verileri arasındaki korelasyon istatistiksel olarak analiz edilmiştir. Bulgular: Gruplar arasındaki istatistiksel analizler, hem mikrosızıntı hem de kırılma dayanım değerleri için önemli farklılıklar göstermiştir. En düşük mikrosızıntı HCV grubunda (0,02 ± 0.01 mm3). En yüksek mikrosızıntı LCR grubunda (0,56 ± 0,21 mm3) tes- pit edilmiştir. En düşük kırılma dayanım değerleri FFV grubunda (620.58 ± 114.02 N) olmuştur. En yüksek kırılma mukavemeti LDV grubunda (1245,82 ± 197,75 N) tespit edilmiş olup mikrosızıntı ve kırılma dayanımları arasında bir korelasyon tespit edilmemiştir. Sonuç: CAD/CAM fabrikasyon lityum disilikat ve hibrit seramik veneerlerin kullanımı, PEEK altyapı üzerinde diğer avantajları da düşünüldüğünde katmanlama tekniğine alternatif olarak kullanılabilir. Anahtar Kelimeler: Polietereterketon, dijital veneerleme, mikro sızıntı, kırılma dayanımı, adeziv diş hekimliği, dental teknoloji

___

  • 1. Papathanasiou I, Kamposiora P, Papavasiliou G, Ferrari M. The use of PEEK in digital prosthodontics: a narrative review. BMC Oral Health. 2020;20(1):217. [CrossRef]
  • 2. Escobar M, Henriques B, Fredel MC, Silva FS, Özcan M, Souza JCM. Adhesion of PEEK to resin-matrix composites used in dentistry: a short review on surface modification and bond strength. J Adhes Sci Technol. 2020;34:1-12. [CrossRef] 3. Stawarczyk B, Eichberger M, Uhrenbacher J, Wimmer T, Edel- hoff D, Schmidlin PR. Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bear- ing capacity and failure types. Dent Mater J. 2015;34(1):7-12. [CrossRef]
  • 4. Taufall S, Eichberger M, Schmidlin PR, Stawarczyk B. Fracture load and failure types of different veneered polyetheretherketone fixed dental prostheses. Clin Oral Investig. 2016;20(9):2493-2500. [CrossRef]
  • 5. Stawarczyk B, Thrun H, Eichberger M, et al. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs. J Prosthet Dent. 2015;114(5):666-673. [CrossRef]
  • 6. Stawarczyk B, Beuer F, Wimmer T, et al. Polyetheretherketone-a suit- able material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater. 2013;101(7):1209-1216. [CrossRef]
  • 7. Çulhaoğlu AK, Özkır SE, Şahin V, Yılmaz B, Kılıçarslan MA. Effect of various treatment modalities on surface characteristics and shear bond strengths of polyetheretherketone-based core materials. J Prosthodont. 2020;29(2):136-141. [CrossRef]
  • 8. Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK material in dentistry. Int Dent Res. 2018;8(2):84-92. [CrossRef]
  • 9. Bötel F, Zimmermann T, Sütel M, Müller WD, Schwitalla AD. Influence of different low-pressure plasma process parameters on shear bond strength between veneering composites and PEEK materials. Dent Mater. 2018;34(9):e246-e254. [CrossRef]
  • 10. Shetty SK, Hasan MS, Zahid M, Suhaim KS, Mohammad F, Fayaz T. Evaluation of fracture resistance and color stability of crowns obtained by layering composite over zirconia and polyetheretherk- etone copings before and after thermocycling to simulate oral envi- ronment: an in vitro study. J Pharm Bioallied Sci. 2020;12(suppl 1):S523-S529. [CrossRef]
  • 11. Lümkemann N, Eichberger M, Stawarczyk B. Bonding to different PEEK compositions: the impact of dental light curing units. Materi- als (Basel). 2017;10(1):1-10. [CrossRef]
  • 12. Stawarczyk B, Jordan P, Schmidlin PR, et al. PEEK surface treatment effects on tensile bond strength to veneering resins. J Prosthet Dent. 2014;112(5):1278-1288. [CrossRef]
  • 13. Younis M, Unkovskiy A, ElAyouti A, Geis-Gerstorfer J, Spintzyk S. The effect of various plasma gases on the shear bond strength between unfilled polyetheretherketone (PEEK) and veneering composite following artificial aging. Materials (Basel). 2019;12(9):1-19. [CrossRef]
  • 14. Stawarczyk B, Keul C, Beuer F, Roos M, Schmidlin PR. Tensile bond strength of veneering resins to PEEK: impact of different adhesives. Dent Mater J. 2013;32(3):441-448. [CrossRef]
  • 15. Stawarczyk B, Taufall S, Roos M, Schmidlin PR, Lümkemann N. Bond- ing of composite resins to PEEK: the influence of adhesive systems and air-abrasion parameters. Clin Oral Investig. 2018;22(2):763-771. [CrossRef]
  • 16. Rosentritt M, Preis V, Behr M, Sereno N, Kolbeck C. Shear bond strength between veneering composite and PEEK after different surface modifications. Clin Oral Investig. 2015;19(3):739-744. [CrossRef]
  • 17. Zhou L, Qian Y, Zhu Y, Liu H, Gan K, Guo J. The effect of different surface treatments on the bond strength of PEEK composite mate- rials. Dent Mater. 2014;30(8):e209-e215. [CrossRef]
  • 18. Caglar I, Ates SM, Yesil Duymus Z. An in vitro evaluation of the effect of various adhesives and surface treatments on bond strength of resin cement to polyetheretherketone. J Prosthodont. 2019;28(1): e342-e349. [CrossRef]
  • 19. Keul C, Liebermann A, Schmidlin PR, Roos M, Sener B, Stawarczyk B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J Adhes Dent. 2014;16(4):383-392. [CrossRef]
  • 20. Barto A, Vandewalle KS, Lien W, Whang K. Repair of resin-veneered polyetheretherketone after veneer fracture. J Prosthet Dent. 2021;125(4):704.e1-704.e8. [CrossRef] 21. Schmidlin PR, Stawarczyk B, Wieland M, Attin T, Hämmerle CH, Fis- cher J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Mater. 2010;26(6):553-559. [CrossRef]
  • 22. Silthampitag P, Chaijareenont P, Tattakorn K, Banjongprasert C, Takahashi H, Arksornnukit M. Effect of surface pretreatments on resin composite bonding to PEEK. Dent Mater J. 2016;35(4):668-674. [CrossRef]
  • 23. Uhrenbacher J, Schmidlin PR, Keul C, et al. The effect of surface modification on the retention strength of polyetheretherketone crowns adhesively bonded to dentin abutments. J Prosthet Dent. 2014;112(6):1489-1497. [CrossRef]
  • 24. Kern M, Lehmann F. Influence of surface conditioning on bonding to polyetheretherketon (PEEK). Dent Mater. 2012;28(12):1280-1283. [CrossRef]
  • 25. Romînu M, Lakatos S, Floriţa Z, Negruţiu M. Investigation of micro- leakage at the interface between a Co-Cr based alloy and four poly- meric veneering materials. J Prosthet Dent. 2002;87(6):620-624. [CrossRef]
  • 26. Ghodsi S, Zeighami S, Meisami Azad M. Comparing retention and internal adaptation of different implant-supported, metal-free frameworks. Int J Prosthodont. 2018;31(5):475-477. [CrossRef]
  • 27. Zeighami S, Ghodsi S, Sahebi M, Yazarloo S. Comparison of marginal adaptation of different implant-supported metal-free frameworks before and after cementation. Int J Prosthodont. 2019;32(4):361-363. [CrossRef] 28. Negm EE, Aboutaleb FA, Alam-Eldein AM. Virtual evaluation of the accuracy of fit and trueness in maxillary poly (etheretherketone) removable partial denture frameworks fabricated by direct and indirect CAD/CAM techniques. J Prosthodont. 2019;28(7):804-810. [CrossRef]
  • 29. Preis V, Hahnel S, Behr M, Bein L, Rosentritt M. In-vitro fatigue and fracture testing of CAD/CAM-materials in implant-supported molar crowns. Dent Mater. 2017;33(4):427-433. [CrossRef]
  • 30. Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M. Maximum voluntary molar bite force in subjects with normal occlu- sion. Eur J Orthod. 2011;33(4):427-433. [CrossRef]
  • 31. Jin HY, Teng MH, Wang ZJ, et al. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. J Prosthet Dent. 2019;122(4):383-388. [CrossRef]
  • 32. Ghodsi S, Tanous M, Hajimahmoudi M, Mahgoli H. Effect of aging on fracture resistance and torque loss of restorations supported by zir- conia and polyetheretherketone abutments: an in vitro study. J Pros- thet Dent. 2021;125(3):501.e1-501.e6. [CrossRef]
  • 33. Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater. 2016;32(11):e275-e283. [CrossRef]
  • 34. Lucsanszky IJR, Ruse ND. Fracture toughness, flexural strength, and flexural modulus of new CAD/CAM resin composite blocks. J Pros- thodont. 2020;29(1):34-41. [CrossRef]