Neonikotinoid İnsektisitlere Bağlı Olarak Drosophila melanogaster’in AChE Aktivitesinde Meydana Gelen Değişikliklerin Bitkisel Ekstraktlar ile Giderilmesi Üzerine Araştırmalar

Bu çalışmada, Drosophila melanogaster’in ergin bireylerinde bulunan asetil kolinesteraz (AChE) enzim aktivitesi üzerine İmidakloprid (İMİ) ve Asetamiprid (ASE)  insektisitlerinin etkileri araştırılmıştır. Ayrıca farklı bitkilere ait su ekstraktlarının (Salvia lavandulifolia, Hypericum scabrum, Capsella bursa-pastoris ve Teucrium orientale) iyileştirici etkileri de in vivo olarak incelenmiştir. Bu amaçla iki deney grubu oluşturulmuştur. İlk deney grubunda ergin bireylere yalnızca farklı dozlarda insektisit (0,5; 1,0; 1,5 ve 2,0 ppm), diğer deney grubunda ise insektisit + bitki ekstraktları (1:1 v/v) birlikte uygulanmıştır. Uygulamalar sonucunda insektisitler doz artışına bağlı olarak ergin bireylerde AChE aktivitesini artırmıştır (P<0,05). Ancak insektisitler bitkisel ekstraktlar ile birlikte uygulanınca enzim aktivitesi tekrar kontrol grubuna yaklaşmıştır (P<0,05).

-

In this study, the effects of Imidacloprid (IMI) and Acetamiprid (ACE) upon Acetylcholinesterase (AChE) enzyme activity found in Drosophila melanogaster’s mature individuals were studied. In addition, curative effects of different plants’ water extracts (Salvia lavandulifolia, Hypericum scabrum, Capsella bursa-pastoris and Teucrium orientale) were analysed as in vivo. Two experimental groups were constituted for that reason. In the first experimental group, individuals were implemented insecticide (0,5; 1,0; 1,5 and 2,0 ppm) only in different doses; in the other experimental group, however, insecticide + plant extracts (1:1 v/v) were applied together. As a result of the applications, insecticides increased AChE activity (P

___

  • Kagabu S., Chloronicotinyl insecticides-discovery, application and future perspective. Rev Toxicol 1997; 1: 75-129.
  • Nauen R., Behaviour modifying effects of low systemic concentrations of imidacloprid Myzus persicae with special reference to an antifeeding response. Pest Sci 1995; 44: 145-153.
  • Yamamoto I., Casida J.E. (Eds.)., Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer-Verlag, 1999, Tokyo, pp 300.
  • Casida J.E., Gammon D.E., Glickman A.H., Lawrence L.J., Quistad G.B., Why insecticides are more toxic to insect than people: the unique toxicology of insects. J Pest Sci 2004; 29: 81- 86.
  • Beckage N.E., Metcalf J.S., Nielson B.D., Nesbit D.J., Disruptive effects of azadirachtin on development of Cotesia congregata in host tobacco horn worm larvae. Archs Insect Biochem Physiol 1988; 9: 47-65.
  • Stapel J.O., Cortesero A.M., Lewis W.J., Distruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol Control 2000; 17: 243-249.
  • Zettler J.L., Lecato G.L., Sublethal doses of malathion and dichlorvos: Effects of fecundity of the black carbet betle. J Econ Entomol 1974; 67 (1): 19-21.
  • Anyinam C., Ecology and ethnomedicine: Exploring links between current environmental crisis and indigenous medical practices. Soc Sci Med 1995; 40 (3): 321-329.
  • Bhattacharya S., Natural Antimutagens: A review. Res J Med Plant 2011; 5: 116-126.
  • Devi R.S., Narayan S., Vani G., Devi C.S.S., Gastroprotective effect of Terminalia arjuna bark on diclofenac sodium induced gastric ulcer. Chem-Biol Interact 2007; 167 (1): 71-83.
  • Kızılet H., Kasımoglu C., Uysal H., Can the Rosa canina plant be used against alkylating agents as a radical scavenger? Pol J Environ Stud 2013; 22: 1263-1267.
  • Kasımoglu C., Uysal H., Mutagenic biomonitoring of pirethroid insecticides in human lymphocyte cultures: Use of micronuclei as biomarkers and recovery by Rosa canina extracts of mutagenic effects. Pharm Biol 2014; 21: 1-5.
  • Gachkar L, Yadegari D, Rezae M.B., Taghizadeh M, Astaneh S.A, Rasooli I., Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem 2007; 102: 898-904.
  • Uysal H, Sisman T, Askın H. Drosophila biyolojisi ve çaprazlama yöntemleri. Ata Üni Yay, 2006, Erzurum, Turkey.
  • Hsiao Y.M., Lai J.Y., Liao H.Y., Feng H.T., Purification and characterization of acetylcholinesterase from oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). J Agric Food Chem 2004; 52: 5340-5346.
  • Ellman G.L., Courtney K.D., Andes V., Featherstone R.M., A new, rapic colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88-95.
  • Wilson I.B., Nachmansohn D., In "Ion Transport Across Membranes" Academic Press, 1954, New York. [18] Mukherjee P.K., Kumar V., Mal M., Houghton P.J., Acetylcholinesterase inhibitors from plants. J Pharm Pharmacol 2007; 14: 289-300.
  • Abou-Donia M.B., Goldstein L.B., Bullman S., Tu T., Khan W.A., Dechkovskaia A.M., Abdel-Rahman A.A., Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J Toxicol Environ Health 2008; 71 (2): 119-130.
  • Liu G.Y., Ju X.L., Cheng J., Selectivity of imidacloprid for fruit fly versus rat nicotinic acetylcholine receptors by molecular modelling. J Mol Model 2010; 16 (5): 993-1002.
  • Ferreira A., Proença C., Serralheiro M.L.M., Araşjo M.E.M., The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol 2006; 108: 31-37.
  • Loizzo M.R., Tundis R., Menichini F., Saab A.M., Statti G.A., Menichini F., Cytotoxic activity of essential oils from Labiatae and Lauraceae families against in vitro human tumor models. Anticancer Res 2007; 27: 3293-9.
  • Ramos A.A., Azqueta A., Pereira-Wilson C., Collins A.R., Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J Agric Food Chem 2010; 58: 7465-7471.
  • Hunt E.J., Lester C.E., Lester E.A., Tackett R.L., Effect of St.John’s wort on free radical production. Life Sci 2001; 69: 181-190.