Naftokinon-Urazol Melezlerinin Antioksidan Etki Mekanizmaları Üzerine DFT Çalışması
Bu çalışmanın amacı, naftokinon-urazol melezlerinin antioksidan aktivitelerinin teorik ve deneysel sonuçlar karşılaştırarak değerlendirilmesi ve antioksidan etki mekanizmalarının araştırılmasıdır. Bu amaçla, incelenen naftokinon-urazol melezleri ve iyonik formları için kuantum kimyasal hesaplamalar B3LYP / 6-311 ++ G (d, p) düzeyinde hem gaz hem de su fazında yapılmıştır. Antioksidan aktiviteleri üzerine suyun çözücü etkisi, aynı hesaplama düzeyinde C-PCM yöntemi kullanılarak araştırıldı. Naftokinon-urazol melezleri için antioksidan etki mekanizmaları, bazı fizikokimyasal parametreler kullanılarak termodinamik olarak değerlendirildi.
DFT Study on Antioxidant Action Mechanisms of Naphthoquinone-Urazole Hybrids
The aim of this study is on the evaluation ofthe antioxidant activities of the investigated naphthoquinone-urazole hybridsby comparing our theoretical results with experimental results and on theelucidation the antioxidant action mechanisms. For this purpose, quantumchemical calculations were performed at the B3LYP/6-311++G(d,p) level for theinvestigated naphthoquinone-urazole hybrids and their ionic forms in the gasphase and in water. The solvation effect of water on the antioxidantactivity was examined using the conductor–likepolarizable continuum model (C-PCM) at the same level oftheory. The antioxidant action mechanisms for theinvestigated naphthoquinone-urazole hybrids were assessedthermodynamically by several physicochemical parameters.
___
- [1]. Mokini Z., Marcovecchio, M. L., & Chiarelli, F., Molecular pathology of oxidative stress in diabetic angiopathy: role of mitochondrial and cellular pathways, Diabetes Research and Clinical Practice, 87-3 (2010) 313-321.
- [2]. Kamkar, A., Javan, A. J., Asadi, F., & Kamalinejad, M., The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil, Food and Chemical Toxicology, 48-7 (2010) 1796-1800.
- [3]. Kovacic, P., & Somanathan, R., Recent developments in the mechanism of anticancer agents based on electron transfer, reactive oxygen species and oxidative stress. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 11-7 (2011) 658-668.
- [4]. Salustiano, E. J., Netto, C. D., Fernandes, R. F., da Silva, A. J., Bacelar, T. S., Castro, C. P., .. & Costa, P. R., Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1, 4-naphthoquinones on human leukemic cells, Investigational new drugs, 28-2 (2011) 139-144.
- [5]. Gaikwad, P., Barik, A., Priyadarsini, K. I., & Rao, B. S. M., Antioxidant activities of phenols in different solvents using DPPH assay, Research on chemical intermediates, 36-9 (2011) 1065-1072.
- [6]. Kuwahara, R., Hatate, H., Yuki, T., Murata, H., Tanaka, R., & Hama, Y., Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina, LWT-Food Science and Technology, 42-7 (2009) 1296-1300.
- [7]. Jacobson, C. R., A. D. Adamo, and C. E. Cosgrove. "US Patent, 3,663,564, 1972." Chem. Abstr. Vol. 76. 1972.
- [8]. Wellington, K. W., Understanding cancer and the anticancer activities of naphthoquinones–a review. RSC Advances, 5-26 (2015) 20309-20338.
- [9]. T. Jikihara, K. Matsuya, H. Ohta, S. Suzuki and O. Wakabayashi, US Pat. 4249934 A, 1981, Chem. Abstr., 95 (1981) 62219 y.
- [10]. R. A. Izydore and I. H. Hall, US Pat. 4866058, 1990, Chem. Abstr.,112 (1990) 151876 x.
- [11]. B. V. Bredow and H. Brechbuehler, Ger. Offen. 2343347 A1, Chem. Abstr., 80 (1974) 140210 s.
- [12]. Saluja, P., Khurana, J. M., Nikhil, K., & Roy, P., Task-specific ionic liquid catalyzed synthesis of novel naphthoquinone–urazole hybrids and evaluation of their antioxidant and in vitro anticancer activity. RSC Advances, 4.65 (2014) 34594-34603.
- [13]. Wright, J. S., Johnson, E. R., & DiLabio, G. A., Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123-6 (2001) 1173-1183.
- [14]. Bartmess, J. E., Thermodynamics of the electron and the proton. The Journal of Physical Chemistry, 98-25 (1994) 6420-6424.
- [15]. Klein, E., Rimarcik, J., & Lukes, V., DFT/B3LYP study of the O–H bond dissociation enthalpies and proton affinities of para-and meta-substituted phenols in water and benzene, Acta Chim. Slovaca, 2-2 (2009) 37-51.
- [16]. Rimarčík, J., Lukeš, V., Klein, E., & Ilčin, M., Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine, Journal of Molecular Structure: THEOCHEM, 952(1-3) (2010) 25-30.
- [17]. Parker, V. D., Homolytic bond (HA) dissociation free energies in solution. Applications of the standard potential of the (H+/H. bul.) couple, Journal of the American Chemical Society, 114-19 (1992) 7458-7462.
- [18]. Bizarro, M. M., Cabral, B. J. C., de Santos, R. M. B., & Simões, J. A. M., Substituent effects on the OH bond dissociation enthalpies in phenolic compounds: agreements and controversies, Pure and Applied Chemistry, 71-8 (1999) 1609-1610.
- [19]. M.A. Robb, J.R. Cheeseman, M.J. Frisch, G.W. Trucks,H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji,M. Caricato, X. Li,H.p.Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.Montgomery, Jr., J.E. Peralta, F. Ogliaro,M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,J.C. Burant, S.S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J.M. Millam, M.Klene, J.E. Knox, J.B. Cross,V. Bakken, C. Adamo, J.Jaramillo, R. Gompert, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.Ochterski, R.L. Martin,K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V.Ortiz, J. Cioslowski, andD.J. Fox, Gaussian 09, Revision C.01 (Gaussian Inc.,Wallingford,CT, (2010).
- [20]. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98-7 (1993) 5648-5652.
- [21]. Cances, E., Mennucci, B., & Tomasi, J., A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of chemical physics, 107-8 (1997) 3032-3041.
- [22]. Özbakır Işın, D., Theoretical study on the investigation of antioxidant properties of some hydroxyanthraquinones, Molecular Physics, 114-24 (2016) 3578-3588.
- [23]. Kabanda, M. M., Tran, V. T., Seema, K. M., Serobatse, K. R., Tsiepe, T. J., Tran, Q. T., & Ebenso, E. E., Conformational, electronic and antioxidant properties of lucidone, linderone and methyllinderone: DFT, QTAIM and NBO studies, Molecular Physics, 113-7 (1015) 683-697.
- [24]. Cai, W., Chen, Y., Xie, L., Zhang, H., & Hou, C., Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues, European Food Research and Technology, 238-1 (2014) 121-128.
- [25]. Markovic, Zoran S., Slavko V. Mentus, and Jasmina M. Dimitrić Marković., Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: implications on in vitro antioxidant activity, The journal of physical chemistry A 113-51 (2009) 14170-14179.
- [26]. Leopoldini, M., Russo, N., & Toscano, M., Gas and liquid phase acidity of natural antioxidants, Journal of agricultural and food chemistry, 54-8 (2006) 3078-3085.
- [27]. Marković, Z., Jeremić, S., Marković, J. D., Pirković, M. S., & Amić, D., Influence of structural characteristics of substituents on the antioxidant activity of some anthraquinone derivatives, Computational and Theoretical Chemistry, 1077 (2016) 25-31.