Naftokinon-Urazol Melezlerinin Antioksidan Etki Mekanizmaları Üzerine DFT Çalışması

Bu çalışmanın amacı, naftokinon-urazol melezlerinin antioksidan aktivitelerinin teorik ve deneysel sonuçlar karşılaştırarak değerlendirilmesi ve antioksidan etki mekanizmalarının araştırılmasıdır. Bu amaçla, incelenen naftokinon-urazol melezleri ve iyonik formları için kuantum kimyasal hesaplamalar B3LYP / 6-311 ++ G (d, p) düzeyinde hem gaz hem de su fazında yapılmıştır. Antioksidan aktiviteleri üzerine suyun çözücü etkisi, aynı hesaplama düzeyinde C-PCM yöntemi kullanılarak araştırıldı. Naftokinon-urazol melezleri için antioksidan etki mekanizmaları, bazı fizikokimyasal parametreler kullanılarak termodinamik olarak değerlendirildi.

DFT Study on Antioxidant Action Mechanisms of Naphthoquinone-Urazole Hybrids

The aim of this study is on the evaluation ofthe antioxidant activities of the investigated naphthoquinone-urazole hybridsby comparing our theoretical results with experimental results and on theelucidation the antioxidant action mechanisms. For this purpose, quantumchemical calculations were performed at the B3LYP/6-311++G(d,p) level for theinvestigated naphthoquinone-urazole hybrids and their ionic forms in the gasphase and in water. The solvation effect of water on the antioxidantactivity was examined using the conductor–likepolarizable continuum model (C-PCM) at the same level oftheory. The antioxidant action mechanisms for theinvestigated naphthoquinone-urazole hybrids were assessedthermodynamically by several physicochemical parameters.

___

  • [1]. Mokini Z., Marcovecchio, M. L., & Chiarelli, F., Molecular pathology of oxidative stress in diabetic angiopathy: role of mitochondrial and cellular pathways, Diabetes Research and Clinical Practice, 87-3 (2010) 313-321.
  • [2]. Kamkar, A., Javan, A. J., Asadi, F., & Kamalinejad, M., The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil, Food and Chemical Toxicology, 48-7 (2010) 1796-1800.
  • [3]. Kovacic, P., & Somanathan, R., Recent developments in the mechanism of anticancer agents based on electron transfer, reactive oxygen species and oxidative stress. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 11-7 (2011) 658-668.
  • [4]. Salustiano, E. J., Netto, C. D., Fernandes, R. F., da Silva, A. J., Bacelar, T. S., Castro, C. P., .. & Costa, P. R., Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1, 4-naphthoquinones on human leukemic cells, Investigational new drugs, 28-2 (2011) 139-144.
  • [5]. Gaikwad, P., Barik, A., Priyadarsini, K. I., & Rao, B. S. M., Antioxidant activities of phenols in different solvents using DPPH assay, Research on chemical intermediates, 36-9 (2011) 1065-1072.
  • [6]. Kuwahara, R., Hatate, H., Yuki, T., Murata, H., Tanaka, R., & Hama, Y., Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina, LWT-Food Science and Technology, 42-7 (2009) 1296-1300.
  • [7]. Jacobson, C. R., A. D. Adamo, and C. E. Cosgrove. "US Patent, 3,663,564, 1972." Chem. Abstr. Vol. 76. 1972.
  • [8]. Wellington, K. W., Understanding cancer and the anticancer activities of naphthoquinones–a review. RSC Advances, 5-26 (2015) 20309-20338.
  • [9]. T. Jikihara, K. Matsuya, H. Ohta, S. Suzuki and O. Wakabayashi, US Pat. 4249934 A, 1981, Chem. Abstr., 95 (1981) 62219 y.
  • [10]. R. A. Izydore and I. H. Hall, US Pat. 4866058, 1990, Chem. Abstr.,112 (1990) 151876 x.
  • [11]. B. V. Bredow and H. Brechbuehler, Ger. Offen. 2343347 A1, Chem. Abstr., 80 (1974) 140210 s.
  • [12]. Saluja, P., Khurana, J. M., Nikhil, K., & Roy, P., Task-specific ionic liquid catalyzed synthesis of novel naphthoquinone–urazole hybrids and evaluation of their antioxidant and in vitro anticancer activity. RSC Advances, 4.65 (2014) 34594-34603.
  • [13]. Wright, J. S., Johnson, E. R., & DiLabio, G. A., Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123-6 (2001) 1173-1183.
  • [14]. Bartmess, J. E., Thermodynamics of the electron and the proton. The Journal of Physical Chemistry, 98-25 (1994) 6420-6424.
  • [15]. Klein, E., Rimarcik, J., & Lukes, V., DFT/B3LYP study of the O–H bond dissociation enthalpies and proton affinities of para-and meta-substituted phenols in water and benzene, Acta Chim. Slovaca, 2-2 (2009) 37-51.
  • [16]. Rimarčík, J., Lukeš, V., Klein, E., & Ilčin, M., Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine, Journal of Molecular Structure: THEOCHEM, 952(1-3) (2010) 25-30.
  • [17]. Parker, V. D., Homolytic bond (HA) dissociation free energies in solution. Applications of the standard potential of the (H+/H. bul.) couple, Journal of the American Chemical Society, 114-19 (1992) 7458-7462.
  • [18]. Bizarro, M. M., Cabral, B. J. C., de Santos, R. M. B., & Simões, J. A. M., Substituent effects on the OH bond dissociation enthalpies in phenolic compounds: agreements and controversies, Pure and Applied Chemistry, 71-8 (1999) 1609-1610.
  • [19]. M.A. Robb, J.R. Cheeseman, M.J. Frisch, G.W. Trucks,H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji,M. Caricato, X. Li,H.p.Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.Montgomery, Jr., J.E. Peralta, F. Ogliaro,M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,J.C. Burant, S.S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J.M. Millam, M.Klene, J.E. Knox, J.B. Cross,V. Bakken, C. Adamo, J.Jaramillo, R. Gompert, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.Ochterski, R.L. Martin,K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V.Ortiz, J. Cioslowski, andD.J. Fox, Gaussian 09, Revision C.01 (Gaussian Inc.,Wallingford,CT, (2010).
  • [20]. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98-7 (1993) 5648-5652.
  • [21]. Cances, E., Mennucci, B., & Tomasi, J., A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of chemical physics, 107-8 (1997) 3032-3041.
  • [22]. Özbakır Işın, D., Theoretical study on the investigation of antioxidant properties of some hydroxyanthraquinones, Molecular Physics, 114-24 (2016) 3578-3588.
  • [23]. Kabanda, M. M., Tran, V. T., Seema, K. M., Serobatse, K. R., Tsiepe, T. J., Tran, Q. T., & Ebenso, E. E., Conformational, electronic and antioxidant properties of lucidone, linderone and methyllinderone: DFT, QTAIM and NBO studies, Molecular Physics, 113-7 (1015) 683-697.
  • [24]. Cai, W., Chen, Y., Xie, L., Zhang, H., & Hou, C., Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues, European Food Research and Technology, 238-1 (2014) 121-128.
  • [25]. Markovic, Zoran S., Slavko V. Mentus, and Jasmina M. Dimitrić Marković., Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: implications on in vitro antioxidant activity, The journal of physical chemistry A 113-51 (2009) 14170-14179.
  • [26]. Leopoldini, M., Russo, N., & Toscano, M., Gas and liquid phase acidity of natural antioxidants, Journal of agricultural and food chemistry, 54-8 (2006) 3078-3085.
  • [27]. Marković, Z., Jeremić, S., Marković, J. D., Pirković, M. S., & Amić, D., Influence of structural characteristics of substituents on the antioxidant activity of some anthraquinone derivatives, Computational and Theoretical Chemistry, 1077 (2016) 25-31.
Cumhuriyet Science Journal-Cover
  • ISSN: 2587-2680
  • Yayın Aralığı: 4
  • Başlangıç: 2002
  • Yayıncı: SİVAS CUMHURİYET ÜNİVERSİTESİ > FEN FAKÜLTESİ
Sayıdaki Diğer Makaleler

Asimetrik Çift Delta Katkılı GaAs Yapılarında Altbantlar Arası İkinci Derece Doğrusal Olmayan Geçişler

Emine ÖZTÜRK

Lipschitz Fonksiyonları için Çift İndisli Fourier Serilerinin Double Deferred Nörlund Ortalamasıyla Yaklaşım

Şeyda SEZGEK, İlhan DAĞADUR

Klorpirifos ve 2,4-Diklorofenoksiasetik Asit Uygulamasının Sığır Karaciğer Katalaz Aktivitesi Üzerine Etkilerinin İncelenmesi

Hasan KARADAĞ

(1R, 2R) -1,2-BIS- (5- (4-Hidroksinaftalin-1- İlazo) - [1, 3,4] Tiyadiazol-2-Diol Yeni Bileşiğinin İn vitro Antioksidan Özellikleri

Pelin KOPARIR, Akif Evren PARLAK

Sonlu Bir Düzlem Paralel Ortamda Vektör Transfer Denkleminin Çözümü

Menekşe ŞENYİĞİT

Eğimli Dikdörtgen Bir Kanalda Köpük Isı Alıcılardan Doğal Taşınımın Deneysel Olarak İncelenmesi

Ayla DOĞAN, Oğuzhan ÖZBALCI

Geciken Argümanlı Bir Sturm-Liouville Probleminin İzinin ve Özfonksiyonlarının Düğüm Noktalarının Hesaplanması

Erdoğan ŞEN

AlN/Al2O3 Şablonlar Üzerindeki Yüksek Al İçerikli AlGaN epi-Tabakaların Büyütme Sıcaklığı Bağımlılığı

İlkay DEMİR

R ile Normallik Testlerinin Deneysel 1. Tip Hata Oranı ve Güç Karşılaştırması

Murat ERİŞOĞLU, Ülkü ERİŞOĞLU, Ahmet PEKGÖR, Aydın KARAKOCA

5.96 keV Enerjide Hg, Pb and Bi Elementlerine ait Bileşiklerin Ortalama M Kabuğu Floresans Verimlerinin Araştırılması ve 70Yb ile 92U Arasındaki Elementlerin Ortalama M Kabuğu Floresans Verimlerinin Deneysel Olarak Hesaplanması

Nuray KÜP AYLIKÇI, Engin TIRAŞOĞLU, Volkan AYLIKÇI, Abdelhalim KAHOUL