Magnetic and magnetocaloric properties of 0.5La0.7Ca0.2Sr0.1MnO3/0.5La0.7Te0.3MnO3 composite

Magnetic and magnetocaloric properties of 0.5La0.7Ca0.2Sr0.1MnO3/0.5La0.7Te0.3MnO3 composite

In this work, the magnetic and magnetocaloric properties of0.5La0.7Ca0.2Sr0.1MnO3/0.5La0.7Te0.3MnO3 (0.5LCSM/0.5LTM) composite have beeninvestigated. The 0.5LCSM/0.5LTM composite has been obtained by mixing theLa0.7Ca0.2Sr0.1MnO3 and La0.7Te0.3MnO3 manganites with a ratio of 0.5:0.5. All samples havebeen synthesized by using the standard solid state method. In order to investigate themagnetic and magnetocaloric properties of the samples, magnetization measurementsdependence on temperature and magnetic field have been performed by using physicalproperty measurement system. The nature of the magnetic phase transition for all materialshas been identified by using Banerjee criterion and Landau theory and according to bothmethods the magnetic phase transition is second order. Magnetic entropy change values havebeen calculated by using Maxwell relation and Landau theory. Based on Maxwell relation,the maximum magnetic entropy change value of the composite has been calculated as 3.70Jkg-1K-1for 5 T.

___

  • [1] Mahjoub S., Baazaoui M., M’nassri R., Rahmouni H., Boudjada N. C. and Oumezzine M., Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1-xFexO3 (0 ≤x ≤ 0.075) manganites, Journal of Alloys and Compounds, 608 (2014) 191–196.
  • [2] Maatar S. C., M’nassri R., Cheikhrouhou Koubaa W., Koubaa M. and Cheikhrouhou A., Structural, magnetic and magnetocaloric properties of La0.8Ca0.2-xNaxMnO3 manganites (0≤x≤0.2), Journal of Solid State Chemistry, 225 (2015) 83–88.
  • [3] Phan M. H. and Yu S. C., Review of the magnetocaloric effect in manganite materials, Journal of Magnetism and Magnetic Materials, 308 (2007) 325–340.
  • [4] Pecharsky V. K., Gschneidner K. A., Pecharsky A. O. and Tishin A. M., Thermodynamics of the magnetocaloric effect, Physical Review B, Volume 64 (2001) 144406.
  • [5] Phan M. H., Tian S. B., Hoang D. Q., Yu S. C., Nguyen C., and Ulyanov A.N., Large magnetic-entropy change above 300K in CMR materials, Journal of Magnetism and Magnetic Materials, 258,259 (2003) 309–311.
  • [6] Dan’kov S. Y., Tishin A.M., Pecharsky V. K. and Gschneidner K. A., Magnetic phase transitions and the magnetothermal properties of gadolinium, Phys. Rev. B, 57 (1998) 3478.
  • [7] Luo Q., and Wang W. H., Magnetocaloric effect in rare earth-based bulk metallic glasses, Journal of Alloys and Compounds, 495 (2010) 209–216.
  • [8] Pecharsky V. K. and Gschneidner K. A., Advanced magnetocaloric materials: What does the future hold?, International Journal of Refrigeration, 29 (2006) 1239-1249.
  • [9] Akça G., Kılıç Çetin S., Güneş M., A. Ekicibil, “Magnetocaloric properties of (La1−xPrx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.3 and 0.5) perovskite manganites”, Ceramics International, 42 (2016) 19097-19104.
  • [10] Akça G., Ayaş A.O., Kılıç Çetin S., Akyol M., Ekicibil A., Effect of Monovalent Cation Doping on Structural,Magnetic, and Magnetocaloric Properties of Pr0.85A0.15MnO3 (A = Ag and K) Manganites, J Supercond Nov Magn 30 (2017) 1515–1525.
  • [11] Ayadi F., Ammar S., Nowak S., Cheikhrouhou-Koubaa W., Regaieg Y., Koubaa M., Monnier J., Sicard L., “Importance of the synthesis and sintering methods on the properties of manganite ceramics: The example of La0.7Ca0.3MnO3”, Journal of Alloys and Compounds, 759 (2018) 52-59.
  • [12] Ayaş A. O., Akyol M., Ekicibil A., Structural and magnetic properties with large reversible magnetocaloric effect in (La1-xPrx)0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5)compounds, Philosophical Magazine, 96(10) (2016) 922–937.
  • [13] Ayaş A. O., Structural and magnetic properties with reversible magnetocaloric effect in PrSr1–xPbxMn2O6 (0.1 ≤ x ≤ 0.3) double perovskite manganite structures, Philosophical Magazine, 98 (30) (2018) 2782–2796
  • [14] Phong P. T., Dang N.V., Bau L.V., An N. M., and Lee In-Ja, Landau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change in La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.95Ti0.05O3, Journal of Alloys and Compounds, 698 (2017) 451-459.
  • [15] Anwar M.S., Ahmed F., and Koo B. H., Influence of Ce addition on the structural, magnetic, and magnetocaloric properties in La0.7-xCexSr0.3MnO3 (0≤x≤0.3) ceramic compound, Ceramics International, 41 (2015) 5821–5829.
  • [16] Shelke A. R., Sinha B. B., Shukla D. K., Phase D. M., Lokhande C. D., and Deshpande N. G., Magnetocaloric effect and critical exponent analysis in electron- doped La1−xTexMnO3 compounds: a comprehensive study, Materials Research Express, 4 (2017) 056102.
  • [17] Phan M. H., Yu S. C., and Hur N. H., Excellent magnetocaloric properties of La0.7Ca0.3−xSrxMnO3(0.05⩽x⩽0.25) single crystals, Appl. Phys. Lett., 86 (2005) 072504.
  • [18] Phan M. H., Peng H. X., and Yu S. C., Large magnetocaloric effect in single crystal Pr0.63Sr0.37MnO3, J. Appl. Phys., 97 (2005) 10M306.
  • [19] Pekala M., Pekala K., Drozd V., Staszkiewicz K., Fagnard J. F., Vanderbemden P., “Magnetocaloric and transport study of poly-and nanocrystalline composite manganites La0.7Ca0.3MnO3/La0.8Sr0.2MnO3”, Journal of Applied Physics, 112 (023906) (2012) 1-8.
  • [20] Sellami-Jmal E., Regaieg Y., Cheikhrouhou-Koubaa W., Koubaa M., Cheikhrouhou A., and Njah N., Magnetic and Magnetocaloric Properties of La0.65Ca0.35MnO3/La0.7Ca0.2Ba0.1MnO3 and La0.65Ca0.35MnO3/Pr0.5Sr0.5MnO3 Composite Manganites, J Supercond Nov Magn, 28(10) (2015) 3121-3126.
  • [21] M'nassri R., Nofal M. M., Rango P. de, and Chniba-Boudjada N., Magnetic entropy table-like shape and enhancement of refrigerant capacity in La1.4Ca1.6Mn2O7–La1.3Eu0.1Ca1.6Mn2O7 composite, RSC Advance,s, 9 (2019) 14916-14927.
  • [22] Nasri M, Dhahri E., Hlil E. K., Estimation of the magnetic entropy change by means of Landau theory and phenomenological model in La0.6Ca0.2Sr0.2MnO3/Sb2O3 ceramic composites, Phase Transitions, 91(6) (2018) 573–585.
  • [23] Zghal E., Koubaa M. , Berthet P., Sicard L., Cheikhrouhou-Koubaa W., Decorse-Pascanut C., Cheikhrouhou A., and Ammar-Merah S., Magneto-transport properties of La0.75Ca0.15Sr0.1MnO3 with YBa2Cu3O7–δ addition, Journal of Magnetism and Magnetic Materials, 414 (2016) 97–104.
  • [24] Mahato R.N., Sethupathi, K., Sankaranarayanan V., Nirmala R., Co-existence of giant magnetoresistance and large magnetocaloric effect near room temperature in nanocrystalline La0.7Te0.3MnO3, Journal of Magnetism and Magnetic Materials, 322 (2010) 2537–2540.
  • [25] Das S., and Dey T. K., Above room temperature magnetocaloric properties of La0.7Ba0.3−zNazMnO3 compounds, Materials Chemistry and Physics, 108 (2008) 220–226.
  • [26] Romero-Muñiz C., Franco V., and Conde A., Influence of magnetic interactions between phases on the magnetocaloric effect of composites, Appl. Phys. Lett., 082402 (2013) -1-5.
  • [27] Romero Go´mez J., Ferreiro Garcia R., Miguel Catoira A. De, Romero Go´mez M., Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration, Renewable and Sustainable Energy Reviews, 17 (2013) 74–82.
  • [28] Banerjee B. K., “On a generalised approach to first and second order magnetic transitions”, Phys. Lett., 12 (1964) 16-17.
  • [29] Kılıç Çetin S., Acet M., Günes M., Ekicibil A., and Farle M., Magnetocaloric effect in (La1-xSmx)0.67Pb0.33MnO3 (0≤ x≤0.3) manganites near room temperature, Journal of Alloys and Compounds, 650 (2015) 285-294.
  • [30] Khelifi J., Dhahri E., and Hlil E. K., Enhancement of Magnetocaloric Effect in (La0.67Ca0.33MnO3)/(La0.7Ba0.3MnO3) Composite, J Low Temp Phys 190 (2018) 315–327.
  • [31] Mleiki A., Othmani S., Cheikhrouhou-Koubaa W., Cheikhrouhou A. and Hlil E. K., Enhanced relative cooling power in Ga-doped La0.7(Sr,Ca)0.3MnO3 with ferromagnetic-like canted state, RSC Advances, 6 (2016) 54299-54309.
  • [32] Thanh T. D., Linh D. C., Yen P. D. H, Bau L.V., Ky V. H., Wang Z., Piao H.G., An N. M., and Yu S.C., Magnetic and magnetocaloric properties in second-order phase transition La1−xKxMnO3 and their composites, Physica B, 532 (2018) 166–171.
  • [33] Wang G.F., Zhao Z.R., Li H.L., and Zhang X.F., Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite, Ceramics International, 41 (2015) 9035–9040.
  • [34] Ezaami A., Ouled Nasser N., Cheikhrouhou- Koubaa W., and Cheikhrouhou A., “Improvement of magnetocaloric properties over large temperature range in 0.5La0.7Ca0.2Sr0.1MnO3/0.5La0.7Ca0.15Sr0.15MnO3 composite”, Journal of Alloys and Compounds, 724 (2017) 851-858.
  • [35] Amaral V.S., and Amaral J.S., Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials, Journal of Magnetism and Magnetic Materials 272,276 (2004) 2104–2105.
  • [36] Amaral J. S., Reis M. S., Amaral V.S., Mendonça T. M., Araújo J. P., Sá M. A., Tavares P. B., and Vieira J. M., Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La-Sr manganites, Journal of Magnetism and Magnetic Materials, 290–291 (2005) 686–689.
  • [37] Koubaa M., Regaieg Y., Koubaa W.C., Cheikhrouhou A., Ammar-Merah S., and Herbst F., Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site, Journal of Magnetism and Magnetic Material, 323 (2011) 252–257.
  • [38] Cherif R., Hlil E. K., Ellouze M., Elhalouani F., and Obbade S., Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides, Journal of Material Science, 49 (2014) 8244–8251.
Cumhuriyet Science Journal-Cover
  • ISSN: 2587-2680
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2002
  • Yayıncı: SİVAS CUMHURİYET ÜNİVERSİTESİ > FEN FAKÜLTESİ