Coupled-Channel Analyses on 〖Ti〗^(46,48,50)+〖Sn〗^124 Heav-ion Fusion Reactions

Coulomb bariyeri yakınındaki ağır iyon füzyonu, deneysel ve teorik ilgi çekmektedir. Çarpışmalar tipik olarak birçok açık reaksiyon kanalı varlığı ile karakterize edilir. Coulomb bariyerinin etrafındaki enerjilerde, süreç, bir veya iki çekirdeğin elastik saçılma, inelastik uyarımlar ve füzyon operasyonlarıdır. Füzyon süreci, saçılma potansiyelini Coulomb ve yakınlık potansiyelinin toplamı olarak alan tek boyutlu bariyer penetrasyon modelinin etkisi olarak tanımlanır. Çiftlenmiş kanallar (CC) hesaplamaları ile ağır iyon füzyon reaksiyonları gerçekleştirdik. CC formalizmi, ağır füzyon reaksiyonlarında bariyer enerjisi altında gerçekleştirilir. Buçalışmada, füzyon tesir kesitleri CC hesaplamaları ile (CCFULL [16], CCFUS [17] ve CCDEF [18] kodları kullanılarak) sistemleri için detaylı olarak incelenmiştir. Hesaplanan sonuçlar, deneysel veri ve ‘nrv’ de hesaplanan mermi ve hedef için ve uyarılmalarını içeren verilerle karşılaştırılmıştır. Hesaplanan Sonuçlar ile deneysel ve ‘nrv’ [19] sonuçları arasında iyi bir uyum mecvuttur.

Coupled-Channel Analyses on 〖Ti〗^(46,48,50)+〖Sn〗^124 Heav-ion Fusion Reactions

Heavy-ion fusion near the Coulomb barrier attract experimental and theoretical interest. The collisons are typically characterized by the presence of many open reaction channels. In the energies around the Coulomb barrier, the processes are elastic scattering, inelastic excitations and fusion operations of one or two nuclei. The fusion process is defined as the effect of one-dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential. We have performed heay-ion fusion reactions with coupled-channels (CC) calculations. CC formalism is carried out under barrier energy in heavy- ion fusion reactions. In this work fusion cross sections have been calculated and analyzed in detail for the three systems  in the framework of CC approach (using the codes CCFULL[16], CCFUS [17] and CCDEF [18]) . Calculated results are compared with experimental data, including excitation of the projectile and target to the lowestand states and with the datas computed from ‘nrv’. CCDEF, CCFULL and ‘nrv’ explains the fusion reactions of heavy-ions very well. There is a good agreement between the calculated results with the experimental and nrv results [19].

___

  • [1] Takigawa N., Hagino K., Heavy Elements and Related New Phenomena, 1025.
  • [2] M. Beckerman, Sub-Barrier Fusion of Two Nuclei, Rep. Prog. Phys.51(1988) 1047; Phys. Rep., 129 (1985) 145.
  • [3] Balantekin A.B., Takigawa N., Quantum Tunnelin in Nuclear Physics, Rev. Mod. Phys., 70 (1998) 77.
  • [4] Santhosh K.P., Bobby Jose V., Heavy-Ion Fusion Ractions of 16O on Spherical/ Deformed 144-154Sm Targets Using Coulomb and Proximity Potentials, Romanian Reports in Phys., 66 (2014) 4, 939-951.
  • [5] G. H. Rawitscher, Nucl. Phys., A85 (1963) 337.
  • [6] Stokstad R. G., Gross E. E., Analysis of the Sub-Barrier fusion of 16O+148,150,152,154Sm, Phys. Rev. C23, (1981) 281.
  • [7] Lipperheide R., Rossner H., Massmann H., Calculation of Reaction and Fusion Cross Sections Using Angle-Dependent Phase Shifts, Nucl. Phys. A394 (1983) 312.
  • [8] Santhosh K. P., Bobby Jose V., Heavy- Ion Fusion Cross Sections of Weakly Bound 9Be on 27Al, 64Zn and Tightly Bound 16O on 64Zn Target Using Coulomb and Proximity Potentials, Nuclear Physics A, 922 (2014) 191-199.
  • [9] Tanimura O., Physical Review, C 35 (1998)4.
  • [10] Birkelund J. R., Tubbs L. E., Huizenga J. R., De J. N., Sperber, Heavy-Ion Fusion: Comparison of Experimental Data with Classical Trajectory Models, Phys. Rep., 56 (1979) 107.
  • [11] Canto L.F., Hussein M.S., Scattering Theory of Molecules, Atoms and Nuclei. World Scientific Publishing Co. Pte. Ltd. (2013)
  • [12] Toubiana A.J., Canto L.F., Hussein M.S., Approximate Transmission Coefficients in Heavy Ion Fusion, Braz J Phys., 47 (2017) 321–332.
  • [13] Dasgupta, M., Hinde D.J., Rowley N., Stefanini A.M., Measuring Barriers To Fusion, Annu. Rev. Nucl. Part. Sci., 48 1998) 401.
  • [14] Wong C.Y., Interaction Barriers in Charged-Particle Nuclear Reactions, Phys. Rev. Lett., 31 (1973) 766.
  • [15] Hagino, K., Rowley N., Large-Angle Scattering and Quasielastic Barrier Distributions, Phys. Rev. C69, (2004) 054610
  • [16] Hagino K., Rowley N., Kruppa A.T., A Program For Coupled-Channel Calculations with all order Couplings for Heavy- Ion Fusşon Reactions, Comput. Phys. Commun., 123 (1999) 143.
  • [17] Dasso C. H., CCFUS,Comput. Phys. Commun., 46 (1987) 187-191.
  • [18] Fernandez Niello J., Dasso C.H., Landowne S., CCDEF, Comput. Phys. Commun., 54 (1989) 409.
  • [19] http://nrv.jinr.ru/nrv/
  • [20] Stokstad R. G., Gross E. E., Analysis of Sub-Barrier Fusion of 16O+148,150,152,154Sm, Phys. Rev. C23, 281 (1981).
  • [21] Thomas T.D., Cross-Section for Compound Nucleus Formation in Heavy-Ion-Induced Reactions, Phys. Rev. 116, 703 (1959).
  • [22] Huizenga J., Igo G., Theoretical Reaction Cross Sections for Alpha Particles with an Optical Model, Nucl. Phys., 29 (1961) 462.
  • [23] Rasmussen J., Sugawara-Tanabe K., Theoretical Studies of Nuclear Collision Process es of Deformed Nuclei, Nucl. Phys. A, 171 (1971) 496.
  • [24] Santhosh K.P., Bobby Jose V., Antony Joseph, Varier K.M., Heavy-Ion Fusion Cross Sections and Barrier Distributions for 12C,16O,28Si and 35Cl on 92Zr, Nuclear Physics A, 817 (2009) 35-44.