44829

Çok Katmanlı Kapton Bant Üzerindeki CoFe'in Manyetik Alan Tepkili Özelliklerinin İncelenmesi

Esnek bir alttaş (Kapton bant) üzerinde manyetik olmayan bir ara katman üzerinde üretilen ferromanyetik [Fe65Co35]5/Cu/[Fe65Co35]5 çok katmanlı manyeto-tepki hücreleri elektron mikroskobu, X-ışını kırınımı, manyetik ve magneto empedans ölçümleri alınarak incelenmiştir. Benzer bir hücrede, bu katmanlar, seçilen büyüme altlığı sert bir yapıda olduğu zaman, olağanüstü bir magneto-empedans etki performansına sahip olduklarını göstermiştir. Burada, bu hücreler Kapton bant üzerinde büyütülerek, manyetik alan sensörü olarak kullanımı değerlendirilip ve magneto empedans özellikleri hazırlama koşulları açısından analiz edilmiştir. Gelecekteki algılama uygulamaları için bu malzeme, düşük fiyat aralığı ve nispeten yüksek hassasiyet özellikleri ile dev manyeto-empedans etkisi için umut verici bir adaydır. Manyeto empedans etkisini gözlemlemek için empedans ölçümlerinin frekans bağımlılığı, uygulanan düşük manyetik alanın bir fonksiyonu olarak gerçekleştirilmiştir. Hücrelerin empedans değeri, düşük frekans aralıklarında sabit 20 mA AC akım kaynağı ile karakterize edilmiştir. Si ve Kapton kaplamadaki filmde, duyarlılıkları, sırasıyla,% 30 / Oe ve% 17 / Oe civarında olan, manyeto empedans oranlarını % 140'a ve% 55'e kadar gösteren pik tepkileri elde edilmiştir.

Investigation of Magnetic Field Response Features of Multilayer CoFe on Kapton Tape

Multilayer magneto-response cells (MMRC) fabricated on a non-magnetic layer among ferromagnetic [Fe65Co35]5/Cu/[Fe65Co35]5 on a flexible substrate (Kapton tape) have been studied by using electron microscopy, X-ray diffraction, magnetic and magnetoimpedance measurements. In a similar cell, these layers have shown previously to have an outstanding magnetoimpedance (MI) effect performance when the selected growth substrate is a rigid one. Here, this MMRC produces on the Kapton tape and evaluate during the using as a magnetic field sensor and the magnetoimpedance characteristics are analyzed in terms of preparation conditions. For future sensing applications, this material is a promising candidate for giant magnetoimpedance effect with the range of low price and relatively high sensitivity features. In order to observe MI effect, the frequency dependence of impedance measurements has performed as a function of the applied low magnetic field. The impedance value of the cells has characterized by using constant 20 mA AC current source at low frequencies ranges. Double (out of plane measurement) peak responses have obtained, showing MI ratios up to % 140 and % 55, their sensitivities are around 30 %/Oe and 17 %/Oe  in the film on Si and Kapton tape, respectively.

___

  • [1]. Ripka P., “Sensors based on bulk soft magnetic materials: Advances and challenges,” JMMM, 320, (2008) 2466-2473.
  • [2]. Tumanski S., Thin Film Magnetoresistive Sensors. Bristol, U.K.: IOP Publishing, 2001.
  • [3]. Zimmermann E., Verweerd A., Glaas W., Tillmann A., and KemnaA., “An AMR sensor-based measurement system for magnetoelectrical resistivity tomography” IEEE Sensors J., 5, (2005) 233-241.
  • [4]. Vopálenský M., Ripka P., and Platil A., “Precise magnetic sensors” Sens. Actuators A, 106, (2003) 38-42.
  • [5]. Freitas P.P., Ferreira R., Cardoso S., and Cardoso F., “Magnetoresistive sensors” J. Phys. Condens. Matter 19, (2007) 165221.
  • [6]. Prance R.J., Clark T.D., Prance H., “Ultra low noise induction magnetometer for variable temperature operation”, Sens. Act., 85, (2000), 361-364.
  • [7]. V´azquez M., Advanced magnetic microwires. In: Handbook of Magnetism and Advanced Magnetic Materials, 1-34. John Wiley & Sons, Ltd (2007).
  • [8]. Kraus L., Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy. J. Magn. Magn. Mater. 195, (1999) 764.
  • [9]. Kraus L., The theoretical limits of giant magneto-impedance, J. Magn. Magn. Mater. 354, (1999) 167-196.
  • [10]. Kurlyandskaya G.V., Bebenin N.G., Vas’kovskii V.O., Giant magnetic impedance of wires with a thin magnetic coating, Phys. Metal. Metallogr. 111 (2), (2011) 133-154.
  • [11]. Agra K., Mori T.J.A., Dorneles L.S., Escobar V.M., Silva U.C., Chesman C., Bohn F., and Corrêa M.A., “Dynamic magnetic behavior in non-magnetostrictive multilayered films grown on glass and flexible substrates,” J. Magn. Magn. Mater. 355, (2014) 136-141.
  • [12]. Fernández E., Kurlyandskaya G.V., García-Arribas A., and Svalov A.V., “Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing,” Nanoscale Research Letters, 7, (2012) 230.
  • [13]. Sharma P., and Gupta A., "Ion beam sputtered thin films of finemet alloy for soft magnetic applications" Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 244, (2006) 105-9.
  • [14]. Chaturvedi A., Laurita N., Leary A., PhanM.H.,McHenryM.E., and SrikanthH., Giant magnetoimpedance and field sensitivity in amorphous and nanocrystalline (Co1−xFex)89Zr7B4 (x = 0, 0.025, 0.05, 0.1) ribbons, Journal Of ApplıedPhysıcs 109, (2011) 07B508.
  • [15]. Panina L.V., Mohri K., Magneto-impedance in multilayerfilms, Sensors and Actuators 81, (2000) 71-77.