89Zr'un Proton Hızlandırıcıda Üretim Koşullarının İncelenmesi

89Zr, uygun bozunum özellikleri, fiziksel yarı ömrü (t1/2 ~ 78 saat) nedeniyle artan ilgi görmüştür ve bu nedenle de antikor temelli immüno-PET için uygun görülmektedir. Relatif olarak salınan pozitronların düşük bozunum enerjisi yüksek çözünürlüklü görüntü alınmasını sağlar. 89Zr-işaretli radyofarmasötiklerinin insanda kullanımı özellikle 89Zr işaretli antikorlar olarak immuno-PET de kullanımı günden güne artmaktadır. Bu çalışmada, 89Zr üretimi ile ilgili hesaplamalar yapılmış ve 89Y hedef sisteminin kullanıldığı (p, n) reaksiyonu kullanılmıştır. Bunun için reaksiyon sonucu Bağ Enerjisi, Eşik Enerjisi, Minimum Coulomb Bariyeri Enerjisi hesaplanmış, daha sonra bu reaksiyonun tesir kesitleri Empire3.2/MALTA kodu kullanılarak bulunmuştur. Işınlama hesaplamaları belirlendikten sonra proton bombardımanı yapılmıştır. Bu ışınlama Ankara Sarayköy Nükleer Araştırma ve Eğitim Merkezi'ndeki proton hızlandırıcısında gerçekleştirilmiştir. Kullanılan siklotron IBA tipi Siklon-30'dur. Daha sonra ayırma kısmı Dowex reçine sistemi ile yapılmıştır. Işınlanmış 89Zr, hedef sistemden ayrıldıktan sonra, radyoaktif 89Zr saf olarak elde edilmiştir.

Analyzing of Production Conditions of 89Zr in the Particle Accelerator

Nowadays 89Zr is outstanding PET radionuclide with its physical half-life (t1/2 ~ 78 hours), useful decay specifications and so that it is suitable for antibody-based immuno-PET. Relatively oscillated positrons' low decay energies supply to take high-resolution. 89Zr-labeled radiopharmaceuticals, especially as 89Zr-labeled antibodies applications are getting increase day by day. In this study, calculations about production of 89Zr were done and used (p,n) reaction of 89Y target system. For this Q-value, Threshold Energy, Minimum Coulomb Barrier Energy of the reaction were calculated then the cross-sections of this reaction were found using Empire3.2/MALTA code. After determining the irradiation calculations, the bombardment performed. The irradiation was performed in Ankara Sarayköy Nuclear Research and Training Center, proton accelerator. The cyclotron is IBA type Cyclone-30. Then separation part was done with Dowex resine system. After separation 89Zr from the irradiated target system, radioactive 89Zr was obtained purely.

___

  • Adonai N., Nguyen K.N., Walsh J., Iyer M., Toyokuni T., Phelps M.E., McCarthy T., McCarthy D.W. and Gambhir S.S., Ex-vivo Cell Labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for Imaging Cell Trafficking in Mice with Positron Emission Tomography, Proc. Natl. Acad. Sci. U.S.A., 5 (2002), 99(5), 3030-3035.
  • Aerts H.J.W.L., Dubois L., Perk L., Vermaelen P., van Dongen G.A.M.S., Wouters B.G. and Lambin P., Disparity Between in-vivo EGFR Expression and 89Zr Labeled Cetuximab Uptake Assessed with PET, J. Nucl. Med., 50 (2009), 123–131.
  • Alfuraih A., Alzimami K., Ma A.K. and Alghamdi A, Optimization of 89Zr Production Using Monte Carlo Simulations, J. Radioanal. Nucl. Chem., 296 (2013), 1025–1029.
  • Avila-Rodriguez M.A., Selwyn R.G., Converse A.K. and Nickles R.J., 86Y and 89Zr as PET Imaging Surrogates for 90Y: A Comparative Study, Proceedings of Ninth Mexican Symposium on Medical Physics, (2006) pp 45–47.
  • Becker W., Emmrich F., Horneff G., Burmester G., Seiler F., Schwarz A., Kalden J. and Wolf F., Imaging Rheumatoid Arthritis Specifically with Technetium-99m CD4-specific (T-helper lymphocytes) Antibodies, Eur. J. Nucl. Med., 17, (1990), 156159.
  • Borjesson P.K.E., Jauw Y.W.S., de Bree R., Roos J.C., Castelijns J., Leemans C.R., van Dongen G.AM.S. and Boellaard R., Radiation Dosimetry of 89Zr-Labeled Chimeric Monoclonal Antibody U36 as Used for Immuno-PET in Head and Neck Cancer Patients, J. Nucl. Med., 50(11), (2009), 1828–1836.
  • Borjesson P.K.E., Jauw Y.W.S., Boellaard R., de Bree R., Comans E.F.I., Roos J.C., Castelijns J.A., Vosjan M.J., Kummer J.A., Leemans C.R., Lammertma A.A. and van Dongen G.A., Performance of Immuno-Positron Emission Tomography with Zirconium-89-Labeled Chimeric Monoclonal Antibody U36 in the Detection of Lymph Node Metastases in Head and Neck Cancer Patients, Clinical Cancer Research, 12 (2006), 2133-2140.
  • Dijkers E.C., Oude Munnink T.H., Kosterink J.G., Brouwers A.H., Jager P.L., de Jong J.R., van Dongen G.A., Schröder C.P., Lub-de Hooge M.N. and de Vries E.G., Biodistribution of 89Zr-Trastuzumab and PET Imaging of HER2-Positive Lesions in Patients with Metastatic Breast Cancer, Clin. Pharmacol. Ther., 87 (2010), 586–592.
  • Dijkers E.C.F., Kosterink J.G.W., Rademaker A.P., Perk L.R., van Dongen G.A.M.S., Bart J., de Jong J.R., de Vries E.G.E. and Lub-de Hooge M.N., Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/neu ImmunoPET Imaging, J. Nucl. Med., 50 (2009), 974–981.
  • Disselhorst J.A., Brom M., Laverman P., Slump C.H., Boerman O.C., Oyen W.J.G., Gotthardt M. and Visser E.P., Image-Quality Assessment for Several Positron Emitters Using the NEMA NU 4-2008 Standards in the Siemens Inveon Small Animal PET Scanner, J. Nucl. Med., 51 (2010), 610617.
  • Firestein G.S., Evolving Concepts of Rheumatoid Arthritis, Nature 423 (6937), 35636115 (2003).
  • Holland J.P., Sheh Y. and Lewis J.S., Standardized Methods for the Production of High Specific-Activity Zirconium-89, Nucl. Med. Biol., 36 (2009), 729–739.
  • IAEA, IAEA-TRS-468: Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods, (2009), Vienna.
  • Lampropoulou V., Calderon-Gomez E., Roch T., Neves P., Shen P., Stervbo U., Boudinot P., Anderton S.M. and Fillatreau S., Suppressive Functions of Activated B Cells in Autoimmune Diseases Reveal the Dual Roles of Toll-like Receptors in Immunity, Immunol. Rev., 233 (2010), 146161.
  • Malviya G., Vries E.F.J.D., Dierckx R.A. and Signore, A., Radiopharmaceuticals for Imaging Chronic Lymphocytic Inflammation. Braz. Arch. Biol. Technol., 50 (2007), 1–13.
  • Meijs W.E., Haisma H.J., Klok R.P., van Gog F.B., Kievit E., Pinedo H.M. and Herscheid J.D., Zirconium-Labeled Monoclonal Antibodies and Their Distribution in Tumor-Bearing Nude Mice, J. Nucl. Med., 38 (1997), 112–118.
  • Nayak T.K. and Brechbiel M.W., Radioimmunoimaging with Longer-Lived Positron-Emitting Radionuclides: Potentials and Challenges, Bioconjugate Chem., 20 (2009), 825–841.
  • Perk L.R., Visser O.J., van Walsum M.S., Vosjan M.J.W.D., Visser G.W.M., Zijlstra J.M., Huijgens P.C. and van Dongen G.A.M.S., Preparation and Evaluation of (89)Zr-Zevalin for Monitoring of (90)Y-Zevalin Biodistribution with Positron Emission Tomography, Eur. J. Nucl. Med. Mol. Imaging, 33 (2006), 1337–1345.
  • Toh M.L. and Miossec, P., The Role of T Cells in Rheumatoid Arthritis: New Subsets and New Targets, Curr. Opin. Rheumatol., 19 (2007), 284288.
  • Van Dongen G.A.M.S., Visser G.W.M., Hooge M.N.L., De Vries E.G. and Perk L., Immuno-PET: a Navigator in Monoclonal Antibody Development and Applications, The Oncologist, 12 (2007), 1379–1389.
  • Verel I., Visser G.W.M., Boellaard R., van Walsum M.S., Snow G.B. and van Dongen G.A.M.S., 89Zr Immuno-PET: Comprehensive Procedures for the Production of 89Zr-Labeled Monoclonal Antibodies, J. Nucl. Med., 44 (2003), 1271–1281.
  • Verel I., Visser G.W.M. and van Dongen G.A.M.S., The Promise of Immuno-PET in Radioimmunotherapy, J. Nucl. Med., 46 (2005), 164s–171s.
  • Walther M., Gebhardt P., Grosse-Gehling P., Wurbach L., Irmler I., Preusche S., Khalid M., Opfermann T., Kamradt T., Steinbach J. and Saluz H.P., Implementation of 89Zr Production and In-vivo Imaging of B-cells in Mice with 89Zr-Labeled Anti-B-Cell Antibodies by Small Animal PET/CT, Applied Radiation and Isotopes, 69 (2011), 852–857.
  • Wu A.M., Antibodies and Antimatter: the Resurgence of Immuno-PET, J. Nucl. Med., 50 (2009)..