Yer Döşemeliklerinin Sıkıştırılabilirlik ve Rezilyans Performans Ölçümü için Bir Test Sistemi Tasarımı

Yer döşemeliklerinin kalitesi, yüzey deformasyonuna karşı gösterdiği dirence göre değerlendirilmektedir. Yer döşemeliklerinin yüzey deformasyonunu etkileyen en önemli faktörler, yer döşemeliklerinin sıkıştırılmasına ve böylece yüzey görünümünün bozulmasına neden olan statik yüklerdir. Yer döşemelik ürünlerinin sıkıştırılabilirlik ve rezilyans performansı hav ipliklerinin görünüm muhafaza etme seviyelerini belirlemektedir. Yer döşemeliklerinin sıkıştırılabilirlik ve rezilyans performansını belirlemek için iki tür test kullanılmaktadır. Bunlar; uzun süreli ağır statik yüklemeden sonra kalınlık kaybı ve kısa süreli orta statik yüklemeden sonra kalınlık kaybıdır. Bu çalışmada, yer döşemeliklerinin sıkıştırılabilirlik ve rezilyans performanslarını ölçmek için bir test sistemi geliştirilmesi amaçlanmıştır. Test sistemi hem kısa süreli orta statik yükleme hem de uzun süreli ağır statik yükleme testleri için gerekli basıncı otomatik olarak uygulayabilecektir. Bu iki test ve kalınlık ölçümünün tek bir cihazla yapılmasının sağlanması ile test prosedürleri otomatik olarak gerçekleştirilecektir.

Design of a Test System for Compressibility and Resilience Performance Measurement of Floor Coverings

The quality of floor coverings is evaluated according to their resistance to texture deformation. The most important factors affecting the texture deformation of floor coverings are static loads causing the compression of floor coverings, thereby the appearance of floor coverings deteriorated unfavorably. The compressibility and resilience performance of floor covering determine the appearance retention level ofpile yarns. There are two types of tests to determine the compressibility and resilience performance of floor coverings namely; thickness loss after prolonged heavy static loading and thickness loss after brief moderate static loading. In this study, it is aimed to design a test system for compressibility and resilienceperformance measurement of floor coverings. The test system will be capable of automatically applying necessary pressure for both brief moderate static loading and prolonged heavy static loading tests. By providing these two tests and the thickness measurement by a solo device, the test procedures will be achieved automatically.

___

  • 1. Gupta, S.K., Goswami, K.K., 2018. Floor Covering Wear Performance. The Textile Institute Book Series, second Edition, Elsevier Ltd., 443-466.
  • 2. Dayiary, M., Najar, S.S., Shamsi, M., 2009. A New Theoretical Approach to Cut-pile Floor Covering Compression Based on Elastic-stored Bending Energy, J. Text. Inst., 100(8), 688-694.
  • 3. Carnaby, G.A., Wood, E.J., 1989. The Physics of Floor coverings, The Journal of The Textile Institute, 71-90.
  • 4. British Standard, 1975. Determination of Thickness, Compression, and Recovery Characteristics of Textile Floor, C: BS 4098.
  • 5. British Standard, 1987. Method for Determination of Thickness Loss of Textile Floor Coverings After Prolonged Heavy Static Loading, BS 4939.
  • 6. American Society for Testing and Materials (ASTM), 2017. Standard Test Method for Measuring Recovery Properties of Floor Coverings after Static Loading, ASTM F970.
  • 7. Turkish Standard, 1991. Textile Floor Coverings-Determination of Thickness Loss After Brief, Moderate Static Loading, TS 3378.
  • 8. British Standard, 1987. Method for Determination of Thickness of Textile Floor Coverings, BS 4051.
  • 9. WIRA Instrumentation, WIRA Floor Covering Static Loading Tester, [cited 2020 01 May]; Available from: http://www.wira.com/media/other/37656/WiraStaticLoading.pdf
  • 10. WIRA Instrumentation, WIRA Digital Thickness Gauge Floor coverings, [cited 2020 01 May]; Available from: http://www.wira.com/media/ other/37656/WiraDigitalThickness.pdf
  • 11. IDM instrument, Static Load Tester for carpet. [cited 2020 01 May]; Available from: http://www.idminstruments.com.au/sites/default/files/S0011%20-%20static%20load%20tester%20for%20carpet_0.pdf
  • 12. WIRA Instrumentation, WIRA Dynamic load machine, [cited 2020 01 May]; Available from: http://www.wira.com/media/other/37656/WiraDynamicLoading.pdf
  • 13. Mecit, D., Roye, A., 2009. Investigation of a Testing Method for Compression Behavior of Spacer Fabrics Designed for Concrete Applications, Textile Research Journal, 79(10), 867-875.
  • 14. Fujimoto, T., Sunderland, M., Tandon, S., Asano, C., Asano, A., Murata, C., Fukuyama, H., 2008. Measurement of Surface Property Using a Special Sensor Developed of Pile Materials, Indian Journal of Fibre & Textile Research, 33, 253-257.
  • 15. Yi, L., Yao, B., 2011. Virtual Instrument Based Measurement System for Handle Properties Evaluation of Textile Materials, Third International Conference on Measuring Technology and Mechatronics Automation, IEEE, Shanghai, China, 3, 1120-1223.
  • 16. Yi Li, X, Hu, J., Wu, X., Li, Q.A., 2014. Simultaneous Measurement Method to Characterize Touch Properties of Textile Materials, Springer Link Journal, Fibers and Polymers, 1548-1559.
  • 17. Orr, M., Stowe, D., Thoe, S., Northup, K., Torok, M., ODell, A., Summers, J., Blouin, V., Joseph, P., 2013. Design of a Scaled Off-vehicle Wheel Testing Device for Textile Tread Wear, Conference: SAE World Congress, SAE Technical Paper. Detroit, Michigan, United States.
  • 18. Sengupta, S., Debnath, S., Sengupta, A., 2016. Fabric Bending Behaviour Testing Instrument for Technical Textiles, Measurement, 205-215.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ