Vortex Control of Cylinder Wake by Permeable Cylinder

Bu çalışmada derin su içerisindeki dairesel silindir arkasındaki akışın silindir çevresine yerleştirilmiş ağ yapılı dış silindirler kullanarak kontrolüne çalışılmıştır. Geçirgenlik oranının etkisini anlayabilmek için sekiz farklı geçirgenlik oranı (?=0,4, 0,5, 0,6, 0,65, 0,7, 0,75, 0,8 ve 0,85) kullanılmıştır. Deneyler boyunca dış silindir çapının iç silindir çapına oranı D/d=2,5 olarak seçilmiştir. İç silindir çapı 30 mm iken, ağ yapılı dış silindir çapı D=75 olarak alınmıştır. Deneysel sonuçlar geçirgenlik oranının, silindir arkasındaki akışın kontrolü üzerine önemli etkileri olan önemli bir parametre olduğunu göstermektedir. Geçirgenlik oranı 0,75'e kadar geçirgenlik oranın artmasıyla, ağ yapılı dış silindir dairesel silindir arkasındaki girdap dökülmesini önemli derecede azaltır. Geçirgenlik oranı ?=0,7 değeri, akış kontrolünün en iyi sağlandığı durumdur

Silindir Ardındaki Girdabin Ağ Yapılı Silindir ile Kontrolü

In this present work, the flow control downstream of a circular cylinder in deep water using an outer permeable cylinder is studied experimentally. To reveal the effect of the porosity, eight different porosity values were selected as β=0,4, 0,5, 0,6, 0,65, 0,7, 0,75, 0,8 and 0,85. The ratio of outer cylinder diameter to inner cylinder diameter, D/d was selected as 2,5, i.e. the inner cylinder diameter is d=30 mm where the outer cylinder diameter is D=75 mm. The results indicated that the porosity is an important parameter to control the flow behind the inner cylinder - outer permeable cylinder arrangement. The outer permeable cylinder significantly suppresses the vortex shedding downstream of the inner cylinder-outer permeable cylinder arrangement with increasing the porosity until the porosities of β>0,75. The porosity of β=0,7 is the most suitable case to control the vortex shedding downstream of the circular cylinder

___

  • 1. Lee, S.J., Lee, S.I., Park, C.W., 2004. Reducing The Drag on a Circular Cylinder by Upstream Installation of a Small Control Rod. Fluid Dynamics Research, 34:233-250.
  • 2. Wang, J.J., Zhang, P.F., Lu, S.F., Wu, K., 2006. Drag Reduction of a Circular Cylinder Using an Upstream Rod. Flow Turbul Combust, 76:83– 101.
  • 3. Hee- Chang, L., Sang- Joon, L., 2004. Flow Control of a Circular Cylinder with O-Rings. Fluid Dynamics Research, 35:107-122 . 4. Akıllı, H., Sahin, B., Tumen, N.F., 2005. Suppression of Vortex Shedding of Circular Cylinder in Shallow Water by a Splitter Plate. Flow Meas Instrum, 16:211–219.
  • 5. Yücel S.B., Çetiner O., Unal M.F., 2010. Interaction of Circular Cylinder Wake with a Short Asymmetrically Located Downstream Plate. Exp Fluids 49: 241-255.
  • 6. Gözmen, B., Akıllı, H., Şahin, B., 2013. Passive Control of Circular Cylinder Wake in Shallow Flow. Measurement 46:1125-1136.
  • 7. Sobera, M.P., Kleıjn, C.R., Van Den Akker, H.E.A., 2006. Subcritical Flow Past A Circular Cylinder Surrounded by a Porous Layer, Phys. Fluids 18: 038106.
  • 8. Bhattacharyya, S., Dhınakaran, S., Khalili, A., 2006. Fluid Motion Around and Through A Porous Cylinder. Chemical Engineering Science, 61:4451-4461.
  • 9. Kleissl, K., Georgakis, C.T., 2011. Aerodynamic Control of Bridge Cables Through Shape Modification: A preliminary Study, Journal of Fluids and Structures 27:1006–1020.
  • 10. Ozkan, M.G., Oruç, V., Akıllı, H., Şahin, B., 2012. Flow Around a Cylinder Surrounded by a Permeable Cylinder in Shallow Water. Exp Fluids, 53:1751–1763
  • 11. Fujısawa, N., Takeda, G., 2003. Flow Control Around a Circular Cylinder by Internal Acoustic Excitation. J Fluid Struct, 17: 903– 913.
  • 12. Kim, W., Yoo, J.Y., Sung, J., 2006. Dynamics of Vortex Lock-On in a Perturbed Cylinder Wake. Phys Fluids, 18: 074103.