Uçucu Kül Yerine Kullanılan Atık Cam Tozunun Kendiliğinden Yerleşen Betonların Taze, Mekanik ve Durabilite Özellikleri Üzerine Etkisi

Bu çalışmada, uçucu kül (UK) yerine atık cam tozu (ACT) kullanılarak kendiliğinden yerleşen beton (KYB) üretilmiş ve ACT’nin KYB üzerindeki etkileri araştırılmıştır. KYB’ler, 550 kg/m3 bağlayıcı içeriğinin yanı sıra 0,32 su/bağlayıcı oranıyla ve 700±10 mm sabit bir yayılma çapıyla üretilmiştir. Öncelikle, ACT kullanılmaksızın çimento ve UK ile kontrol karışımı üretilmiş, sonrasında UK yerine ACT %5, %10, %15 ve %20 oranlarında kullanılarak diğer 4 karışım tasarlanmıştır. KYB’lerin taze özelliklerini belirlemek amacıyla yayılma tablasında yayılma çapı ve T500(mm) slump yayılma süresi, V hunisinde boşalma süresi ve L kutusunda yükseklik oranı deneyleri yapılmıştır. Sertleşmiş halde ise KYB’lerin mekanik özelliklerini tespit etmek için basınç, yarmada çekme ve eğilme deneyleri, durabilite özelliklerini belirlemek amacıyla kılcal su geçirimliliği ve hızlı klor geçirimliliği deneyleri yapılmıştır. Sonuçlara göre ACT, KYB’lerin yayılma çapı ve L kutusu yükseklik oranı değerlerini azaltırken, T500(mm) slump yayılma süresi ve V hunisi boşalma süresi değerlerini artırmıştır. Ayrıca, UK yerine kullanılan ACT miktarı arttıkça KYB’nin mekanik ve durabilite özellikleri iyileşmiştir.

The Effect of Waste Glass Powder using Instead of Fly Ash on the Fresh, Mechanical and Durability Properties of Self Compacting Concretes

In this study, self-compacting concrete (SCC) was produced by using waste glass powder (WGP) instead of fly ash (FA) and the effects of WGP on SCC were investigated. SCCs were produced with 0.32 water/binder ratio and a constant slump diameter of 700 ± 10 mm as well as 550 kg/m3 binder content. Firstly, the control mixture with cement and FA was produced without WGP, then, other four mixtures were designed using WGP in the ratios of 5%, 10%, 15% and 20% instead of FA. Slump diameter and T500(mm) slump flow time in slump table, discharge time in V-funnel and height ratio in L-box tests were performed in order to determine the fresh properties of the SCCs. In the hardened state, compressive, splitting tensile and flexural tests in order to indentify the mechanical properties of SCCs, water sorptivity and rapid chloride permeability tests in order to determine durability properties were performed. According to the results, while WGP decreased values of slump diameter and L-box height ratio of SCCs, values of T500(mm) slump flow time and V-funnel discharge time were increased. In addition, as the amount of WGP used in place of the UK increased, the mechanical and durability properties of SCC improved.

___

  • Omrane, M., Kenai, S., Kadri, E.H., Ait Mokhtar, A., 2017. Performance and Durability of Self Compacting Concrete using Recycled Concrete Aggregates and Natural Pozzolan, Journal of Cleaner Production, 165, 415-430.
  • Felekoğlu, B., Türkel, S., Baradan, B., 2004. Kendiliğinden Yerleşen Beton Potansiyel Avantaj ve Dezavantajları, İMO İzmir Şubesi, 120.
  • Felekoglu, B., 2003. Kendiliğinden Yerleşen Betonun Fiziksel ve Mekanik Özelliklerinin Araştırılması, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Khatib, J.M., 2008. Performance of Self Compacting Concrete Containing Fly Ash, Construction and Building Materials, 22, 1963-1971.
  • Lena, E.D., Spinelli, M., Martínez, I., Gatti, M., Scaccabarozzi, R., Cinti, G., Romano, M.C., 2017. Process Integration Study of Tail-End Ca-Looping Process for CO2 Capture in Cement Plants, International Journal of Greenhouse Gas Control, 67, 71-92.
  • Gutiérrez, A.S., Eras, J.J.C., Gaviria, C.A., Caneghem, J.V., Vandecasteele, C., 2017. Improved Selection of The Functional Unit in Environmental Impact Assessment of Cement, Journal of Cleaner Production, 168, 463-473.
  • Chen, C., Habert, G., Bouzidi, Y., Jullien, A., 2010. Environmental Impact of Cement Production: Detail of the Different Processes and Cement Plant Variability Evaluation, Journal of Cleaner Production, 18, 478-485.
  • Abbasa, S., Saleema, M.A., Kazmib, S.M.S., Munir, M.J., 2017. Production of Sustainable Clay Bricks Using Waste Fly Ash: Mechanical and Durability Properties, Journal of Building Engineering, 14, 7-14
  • Oner, A., Akyuz, S., Yildiz, R., 2005. An Experimental Study on Strength Development of Concrete Containing Fly Ash and Optimum Usage of Fly Ash in Concret, Cement and Concrete Research, 35(6), 1165-1171.
  • Munir, M.J., Qazi, A.U., Kazmi, S.M.S., Khitab, A., Ashiq, S.Z., Ahmed I., 2016. A Literature Review on Alkali Silica Reactivity of Concrete in Pakistan, Pakistan Journal of Science, 68(1), 53-62.
  • Nagaratnam, B.H., Rahman, M.E., Mirasa, A.K., Mannan, M.A., Lame, S.O., 2016. Workability and Heat of Hydration of Self-Compacting Concrete Incorporating Agro-Industrial Waste, Journal of Cleaner Production, 112, 882-894. Kim, J.K., Han, S.H., Park, Y.D., Noh, J.H., Park, C.L., Kwon, Y.H., Lee, S.G., 1996. Experimental Research on the Material Properties of Super Flowing Concrete, in: Bartos, P.J.M., Marrs, D.L., Cleland, D.J., (Eds.), Production Methods and Workability of Concrete, E&FN Spon, 271-284.
  • Mahalingam, B., Nagamani, K., Kannan, L.S., Haneefa, K.M., Bahurudeen, A., 2016. Assessment of Hardened Characteristics of Raw Fly Ash Blended Self-Compacting Concrete, Perspectives in Science, 8, 709-711.
  • Vijayakumar, G., Vishaliny, H., Govindarajulu, D., 2013. Studies on Glass Powder as Partial Replacement of Cement in Concrete Production, International Journal of Emerging Technology and Advanced Engineering, 3(2), 153-157.
  • Lee, H., Hanif, A., Usman, M., Sim, J., Oh, H., 2018. Performance Evaluation of Concrete Incorporating Glass Powder and Glass Sludge Wastes as Supplementary Cementing Material Journal of Cleaner Production, 170, 683-693.
  • Khmiri, A., Chaabouni, M., Samet, B., 2013. Chemical Behaviour of Ground Waste Glass When used as Partial Cement Replacement in Mortars, Construction and Building Materials, 44, 74-80.
  • Vanjare, M.B., Mahure, S.H., 2012. Experimental Investigation on Self Compacting Concrete using Glass Powder, International Journal of Engineering Research and Applications, 2(3), 1488-1492.
  • Du, H., Tan, K.H., 2017. Properties of High Volume Glass Powder Concrete, Cement and Concrete Composites, 75, 22-29.
  • Aliabdo, A.A., Abd Elmoaty M., Abd Elmoaty, Ahmet, Y. Aboshama, 2016. Utilization of Waste Glass Powder in the Production of Cement and Concrete, Construction and Building Materials, 124, 866-877.
  • ASTM C192/C192M, 2007. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, USA.
  • EFNARC, 2002. Specifications and Guidelines for Self-Compacting Concrete, EFNARC, Association House, 99 West Street, Farnham, United Kingdom, www.efnarc.org, ISBN 0 953973344, 32.
  • ASTM C39, 2012. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  • ASTM C496, 2011. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  • ASTM C293/C293M-10, 2010. Standard Test Method for Flexural Strength of Concrete, ASTM International, West Conshohocken, PA, USA.
  • ASTM C1202, 2012. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, ASTM International, West Conshohocken, PA, USA.
  • Vandhiyan, R., Ramkuma, K., Ramya, R., 2013. Experimental Study on Replacement of Cement By Glass Powder, International Journal of Engineering Research & Technology (IJERT), 2(5), 234-238.
  • Öz, H.Ö., Yücel, H.E., Güneş, M., 2017. Comparison of Glass Powder and Fly Ash Effect on the Fresh Properties of Self-Compacting Mortars, IOP Conference Series: Materials Science and Engineering, 245, 032036.
  • Yücel, H. E., Şahmaran, M., Yıldırım, G., Lachemi, M., 2014. Engineered Cementitious Composites As Sustainable Overlay Materials for Bridge Deck Applications, İstanbul Bridge Conference, İstanbul, August 11-13.
  • Liu, M., 2011. Incorporating Ground Glass in Self-Compacting Concrete, Construction and Building Materials, 25, 919-925.