Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs

In the present study, the effect of the multi-walled carbon nanotubes (MWCNTs) fillers weight fraction on the mechanical, electrical, and thermal properties of the epoxy was calculated analytically. The results were then compared and it was found out that the MWCNTS has a significant effect on the electrical conductivity of the epoxy. The MWCNT modified epoxy composites were considered as the matrix material to design quasi-isotropic carbon fibre/epoxy composite. The change of the weight fraction of the MWCNTs on the mechanical, electrical, and thermal properties of the carbon fibre/epoxy laminates was also calculated. Finally, the hygrothermal load and the bending load response of the laminated composites were researched. MWCNTs fix the mismatch between the hygrothermal properties of the epoxy matrix and the carbon fiber.

Karbon Nanotüp ile Modifiye Edilmiş Fiber Takviyeli Laminelerin Isıl ve Elektriksel Özelliklerinin Teorik Analizi

Bu çalışmada, çoğul duvarlı karbon nanotüplerin (MWCNT) epoksinin mekanik, elektrik ve ısıl özellikleri üzerindeki etkisi analitik olarak hesaplanmıştır. MWCNT’nin epoksinin elektriksel iletkenliği üzerinde önemli bir etkiye sahip olduğu bulunmuştur. MWCNT modifiyeli epoksi malzeme ile karbon fiber/epoksi tabakalı kompozit malzemeler tasarlanmıştır. MWCNT’lerin ağırlıkça katkısının karbon fiber/epoksi kompozitlerin mekanik, elektriksel ve termal özellikleri üzerindeki etkisi de hesaplanmıştır. Son olarak, MWCNT takviyeli tabakalı kompozitlerin higrotermal yük ve eğilme yükü altındaki tepkileri araştırılmıştır. MWCNT’lerin, epoksi matris ve karbon fiberin ısı ve neme bağlı özellikleri arasındaki uyumsuzluğu azalttığı sonucuna varılmıştır.

___

1. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., Schulte, K., 2005. Influence of Nano-Modification on the Mechanical and Electrical Properties of Conventional Fibre- Reinforced Composites, Compos. Part A Appl. Sci. Manuf., 36, 1525–1535. doi:10.1016/j. compositesa.2005.02.007.

2. Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., 2006. Glass-fibre-reinforced Composites with Enhanced Mechanical and Electrical Properties -Benefits and Limitations of a Nanoparticle Modified Matrix, Eng. Fract. Mech., 73(16), 2346–2359. doi:10.1016/j.engfracmech.2006. 05.015.

3. Chen, Q., Zhang, L., Rahman, A., Zhou, Z., Wu, X., Fong, H., 2011. Hybrid Multi-scale Epoxy Composite Made of Conventional Carbon Fiber Fabrics with Interlaminar Regions Containing Electrospun Carbon Nanofiber Mats, Compos. Part A, 42, 2036–2042. doi:10.1016/j.compositesa.2011. 09.010.

4. Ashrafi, B., Díez-Pascual, A.M., Johnson, L., Genest, M., Hind, S., Martinez-Rubi, Y., González-Domínguez, J.M., Martínez, M.T., Simard, B., Gómez-Fatou, M.A., Johnston, A., 2012. Processing and Properties of PEEK/ Glass Fiber Laminates: Effect of Addition of Single-Walled Carbon Nanotubes. Compos. Part A, 43, 1267–1279. doi:10.1016/j. compositesa.2012.02.022.

5. Ashrafi, B., Naffakh, M., Di, A.M., Gonza, M., Johnston, A., Simard, B., Martínez, M.T., Gómez-Fatou, M.A., 2011. Influence of Carbon Nanotubes on the Thermal, Electrical and Mechanical Properties of Poly (Ether Ether Ketone)/Glass Fiber Laminates, Carbon, 49(8), 2817-2833. doi:10.1016/j.carbon.2011.03.011.

6. da Costa, E.F.R., Skordos, A.A., Partridge, I.K., Rezai, A., 2012. RTM Processing and Electrical Performance of Carbon Nanotube Modified Epoxy/fibre Composites, Compos. Part A Appl. Sci. Manuf., 43, 593–602. doi:10.1016/j.compositesa.2011.12.019.

7. Socher, R., Krause, B., Boldt, R., Hermasch, S., Wursche, R., Pötschke, P., 2011. Melt Mixed Nano Composites of PA12 with MWNTs: Influence of MWNT and Matrix Properties on Macrodispersion and Electrical Properties. Compos. Sci. Technol., 71, 306–314. doi:10.1016/j.compscitech.2010.11. 015.

8. Han, S., Meng, Q., Araby, S., Liu, T., Demiral, M., 2019. Mechanical and Electrical Properties of Graphene and Carbon Nanotube Reinforced Epoxy Adhesives: Experimental and Numerical Analysis. Compos. Part A Appl. Sci. Manuf., 120, 116–126. doi:10.1016/j.compositesa.2019. 02.027.

9. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., 2010. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. Part A Appl. Sci. Manuf., 41, 1345–1367. doi:10.1016/j.compositesa.2010.07.003.

10. Eskizeybek, V., Avci, A., Gülce, A., 2014. The Mode I Interlaminar Fracture Toughness of Chemically Carbon Nanotube Grafted Glass Fabric/epoxy Multi-scale Composite Structures, Compos. Part A Appl. Sci. Manuf., 63, 94–102. doi:10.1016/j.compositesa.2014. 04.013.

11. Ghislandi, M., de A. Prado, L.A.S., Barros- Timmons, K.S.A., 2013. Effect of Filler Functionalization on Thermo-mechanical Properties of Polyamide-12/Carbon Nanofibers Composites: A Study of Filler–Matrix Molecular Interactions, J. Mater. Sci., 48, 8427–8437. doi:10.1007/s10853-013-7655-4.

12. Zhu, Y., Bakis, C.E., Adair, J.H., 2012. Effects of Carbon Nanofiller Functionalization and Distribution on Interlaminar Fracture Toughness of Multi-scale Reinforced Polymer Composites, Carbon, 50(3), 1316–1331. doi:10.1016/j.carbon.2011.11.001.

13. Chen, X., Wang, J., Lin, M., Zhong, W., Feng, T., Chen, X., Chen, J., Xue, F., 2008. Mechanical and Thermal Properties of Epoxy Nanocomposites Reinforced with Amino- functionalized Multi-walled Carbon Nanotubes Mater. Sci. Eng. A, 492, 236–242. doi:10.1016/j.msea.2008.04.044.

14. Kim, Y.J., Shin, T.S., Choi, H.D., Kwon, J.H., Chung, Y.C., Yoon, H.G., 2005. Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/epoxy Composites, Carbon, 43, 23–30. doi:10.1016/j.carbon.2004.08.015.

15. Sagar, R., Petrova, R.S., Somenath, M., 2018. Effect of Carbon Nanotube (CNT) Functionalization in Epoxy-CNT Composites, Nanotechnol. Rev., 7, 475–485. doi:10.1016/j.physbeh.2017.03.040.

16. Moisala, A., Li, Q., Kinloch, I.A., Windle, A.H., 2006. Thermal and Electrical Conductivity of Single- and Multi-walled Carbon Nanotube-epoxy Composites, Compos. Sci. Technol., 66, 1285–1288. doi:10.1016/j. compscitech.2005.10.016.

17. Jarali, C.S., Patil, S.F., Pilli, S.C., 2015. Hygro- thermo-electric Properties of Carbon Nanotube Epoxy Nanocomposites with Agglomeration Effects, Mech. Adv. Mater. Struct., 22, 428–439. doi:10.1080/15376494.2013.769654.

18. Zhang, Y.C., Wang, X., 2006. Hygrothermal Effects on Interfacial Stress Transfer Characteristics of Carbon, J. Reinf. Plast. Compos., 25(1), 71-88. doi:10.1177/07316844 06055456.

19. Antunes, R.A., de Oliviera, M.C.L., Ett, G., Ett, V., 2011. Carbon Materials in Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells: A Review of the Main Challenges to Improve Electrical Performance, J. Power Sources, 196, 2945-2961. doi.org/10.1016/j.jpowsour.2010.12.041.

20. Bairan, A., Selamat, M.Z., Sahadan, S.N., Malingam, S., Mohamad, N., 2018. Effect of CNTs on the Electrical and Mechanical Properties of Polymeric Composite as PEM Fuel Cell Bipolar Plate, J. Teknol. Sci. Eng., 80(6), 115-122.

21. Yao, K., Adams, D., Hao, A., Zheng, J.P., Liang, Z., Nguyen, N., 2017. Highly Conductive and Strong Graphite-Phenolic Resin Composite for Bipolar Plate Applications, Energy Fuels, 31, 14320-14331. doi:10.1021/acs.energyfuels.7b02678.

22. Lee, H.E., Chung, Y.S., Kim, S.S., 2017. Feasibility Study on Carbon-Felt-Reinforced Thermoplastic Composite Materials for PEMFC Bipolar Plates, Compos. Struct., 180, 378-385. doi.org/10.1016/j.compstruct.2017. 08.037.

23. Bairan, K.A., Selamat, M.Z., Sahadan, S.N., Malingam, S.D., Mohamad, N., 2016. Effect of Carbon Nanotubes Loading in Multifiller Polymer Composite as Bipolar Plate for PEM Fuel Cell, Proced. Chem., 19, 91-97. doi:10.1016/j.proche.2016.03.120.

24. Chaiwan, P., Pumchusak, J., 2015. Wet vs. Dry Dispersion Methods for Multiwall Carbon Nanotubes in the High Graphite Content Phenolic Resin Composites for use as Bipolar Plate Application, Electrochim. Acta, 158, 1-6. doi.org/10.1016/j.electacta.2015.01.101.

25. Suherman, H., Sulong, A.B., Sahari, J., 2013. Effect of Compression Molding Parameters on the In-Plane and Through-Plane Conductivity of Carbon Nanotubes/Graphite/Epoxy Nanocomposites as Bipolar Plate Material for a Polymer Electrolyte Membrane Fuel Cell, Ceram. Int., 39, 1277-1284. doi.org/10.1016/j. ceramint.2012.07.059.

26. Liao, S.H., Yen, C.Y., Weng, C.C., Lin, Y.F., Ma, C.C.M., Yang, C.H., Tsai, M.C., Yen, M.Y., Hsiao, M.C., Lee, S.J., Xie, X.F., Hsiao, Y.H., 2008. Preparation and Properties of Carbon Nanotube/Polypropylene Nanocomposite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells, J. Power Sources, 185, 1225-1232. doi:10.1016/j.jpowsour.2008.06. 097.

27. Davé, R., Gupta, R., Pfeffer, R., Sundaresan, ,S., Tomassone, M.S., 2006. Deagglomeration and Mixing of Nanoparticles, NSF Nanoscale Science and Engineering Grantees Conference, Grant#: 0506722, 2006, Dec 4-6.

28. Ashrafi, B., Guan, J., Mirjalili, V., Zhang, Y., Chun, L., Hubert, P., Simard, B., Kingston, C.T., Bourne, O., Johnston, A., 2011. Enhancement of Mechanical Performance of Epoxy/carbon Fiber Laminate Composites Using Single-walled Carbon Nanotubes, Compos. Sci. Technol., 71, 1569–1578. doi:10.1016/j.compscitech.2011.06.015.

29. Mirjalili, V., Ramachandramoorthy, R., Hubert, P., 2014. Enhancement of Fracture Toughness of Carbon Fiber Laminated Composites Using Multi Wall Carbon Nanotubes. Carbon, 79, 413–423. doi:10.1016/j.carbon.2014.07.084.

30. Jones, M.R., 1999. Mechanics of Composite Materials, 2nd Ed., Taylor & Francis, Inc. PA, 19106.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

iDAR Verisi Yardımıyla Otomatik Dalga Boyu Bandı Yaklaşımı Kullanılarak Hiperspektral Görüntülerde Spektral Değişkenliğin Azaltılması

Sevcan KAHRAMAN

Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi

Hasan Hüseyin ÜNAL, Salih Hakan YETGİN

El Yapımı Tabanlı ve Derin Öğrenme Yöntemlerini Kullanan Yüz Yanıltma Önleme Şeması

Omid SHARIFI

İnsansız Hava Aracı (İHA) ile Ortofoto ve Sayısal Yükseklik Modeli Üretimi: Adıyaman Üniversitesi Merkez Kampüs Örneği

Senem TEKİN, Fatih TEKİR

The Effect of Weather Conditions and Some Demographic Data on the Confirmed COVID-19 Cases: Analysis for 12 Statistical Regions of Turkey

Selin SARAÇ, Melik KOYUNCU

Stereolitografi (SLA) Tekniği ile Basılan 3 Boyutlu Polimer Yapılarda İkincil Kürleme Süresinin Mekanik Özelliklere Etkisi

İsmail AKTİTİZ, Kadir AYDIN, Alparslan TOPCU

Haraptepe (Horzum-Adana) Pb-Zn Cevherleşmesinin Kökenine Genel Bir Yaklaşım

Yusuf URAS, Cihan YALÇIN, Mesut ÖZEN

Güneş Sıcak Su Isıtma Sistemleri için Termo Ekonomik Optimizasyon Üzerine Bir Çalışma

Murtaza YILDIRIM, Mehmet Sait SÖYLEMEZ

On the Thermo Economical Optimization for Solar Hot Water Heating Systems

Mehmet Sait SÖYLEMEZ, Murtaza YILDIRIM

Hava Koşullarının ve Bazı Demografik Özelliklerin Doğrulanmış COVID-19 Vakaları Üzerine Etkisi: Türkiye’nin 12 İstatistik Bölgesi Analizi

Selin SARAÇ, Melik KOYUNCU