Sandviç Malzeme Geliştirmede Polimer Köpük Çekirdek Kalınlığının Eğilme Dayanımına Etkisinin Deneysel olarak Araştırılması

Hibrit malzeme sınıflandırma kategorilerinden biri olan sandviç yapılar, oldukça hafif ve eğilme rijitliği çok yüksek teknolojik malzemelerin elde edilmesine olanak sağlamaktadır. Literatürde ileri seviye kompozit malzemeler olarak adlandırılan bu yapılar, otomotiv, havacılık, gemi ve savunma endüstrileri gibi alanların yenilikçi malzemeleridir. Bu çalışmada farklı çekirdek kalınlığına sahip PVC köpük malzemesi ve örgü dizilimli karbon elyaf kumaşları kullanılarak bir epoksi matris ile sandviç plakalar üretilmiş ve çekirdek kalınlığının eğilme direncine olan etkisi araştırılmıştır. ASTM C393/M 393C standardında belirtilen boyutlarda elde edilen numuneler üç nokta eğilme testine tabi tutulmuştur. Testler sonucunda numune ağırlığında fazla artış olmamasına rağmen malzemenin yük taşıma kapasitesinde iyileşme olduğu gözlemlenmiştir. Ayrıca, malzemede meydana gelen hasar durumu da incelenmiştir.

An Experimental Investigation of the Effect of Core Thickness on Bending Resistance in Development of Polymer Foam Core Sandwich Structures

Sandwich structures which are categorized under the hybrid materials, provide to obtain very light-weigth and very high resistance to bending when compared to commonly used laminated composite materials. These structures are now called as advanced composite materials and newly used in automotive, aviation, marine and defense industries. In this study, sandwich plates having different core thicknesses and were fabricated with carbonfiber skins and epoxy matrix and the effect of core thickness on bending resistance was investigated. The test specimens were cut according to standard dimensions provided in ASTM C393/M 393C standard then subjected to three point bending test. The results of the tests showed that there is a good improvement on bending resistance of the materials although the weight of the specimens was not increased much. Also, the failure modes occured on the materials was examined.

___

  • 1. Ronald, F. G., 2012. Principles of Composite Material Mechanics, 3rd Edition. CRC Press.
  • 2. Tortoç, A., 2009. Balsa/Pvc Sandviç Yapılarda Kırılma Tokluğu Etkisinin Nümerik Çalışması, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • 3. Carlsson, L. A., Kardomateas, G. A., 2011. Structural and Failure Mechanics of Sandwich Composites. Springer.
  • 4. Kara, E., 2012. Çeşitli Elyaf Dizilimleriyle Oluşturulmuş Metal Köpük Çekirdekli Sandviç Kompozitlerin Mekanik Davranışlarının İncelenmesi, Yüksek Lisans Tezi, Hitit Üniversitesi, Fen Bilimleri Enstitüsü, Çorum.
  • 5. Daniel, I. M., Gdoutos, E. E., Wang, K. A., Abot, J. L., 2002. Failure Modes of Composite Sandwich Beams. International Journal of Damage Mechanics, Vol. 11, p. 309-334.
  • 6. Mallick, P. K., 2007. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. CRC Press.
  • 7. Harte, A. M., Fleck, N. A., Ashby, M. F., 2000. Sandwich Panel Design using Aluminum Alloy Foam. Advanced Engineering Materials, 2, No. 4, p. 219-222.
  • 8. Kulkarni, N., Mahfuz, H., Melanie, S., Carlson, L.A., 2004. Fatigue Failure Mechanism and Crack Growth in Foam Core Sandwich Composites under Flexural Loading, Journal of Reinforced Plastics & Composites, 23(1), p. 83–94.
  • 9. Lim, T.S., Lee, C.S., Lee, D.G., 2004. Failure Modes of Foam Core Sandwich Beams under Static and Impact Loads, Journal of Composite Materials, 38(18), p. 1639–1662.
  • 10. Steeves, C.A., Fleck, N.A., 2004. Collapse Mechanisms of Sandwich Beams with Composite Faces and a Foam Core, Loadedin Three-point Bending. Part I: Analytical Models and Minimum Weight Design. International Journal of Mechanical Sciences, 46, p. 561–583.
  • 11. M. Zabihpoor, M., Adibnazari, S., Moslemian, R., Abedian, A., 2007. Mechanisms of Fatigue Damage in Foam Core Sandwich Composites with Unsymmetrical Carbon/Glass Face Sheets. Journal of Reinforced Plastics And Composites, Vol. 26, No. 17/2007, p. 1831-1842.
  • 12. Atas, C., Sevim, C., 2010. On the Impact Response of Sandwich Composites with Cores of Balsa Wood and PVC foam. Composite Structures, 93, p. 40-48.
  • 13.Bey, K. C., Gilgert, J., Azari, Z., 2012. Behaviour of composite sandwich foam-laminated glass/epoxy under solicitation static and fatigue. Composites: Part B, 43, p. 1178–1184.
  • 14. Zhou, J., Hassan, M. Z., Guan, Z., Cantwell, W. J., 2012. The Low Velocity Impact Response of Foam-based Sandwich Panels. Composites Science and Technology, 72, p. 1781-1790.
  • 15. Ozdemir, O., Karakuzu, R., Al-Shamary, A. K. J., 2015. Core-thickness Effect on the Impact Response of Sandwich Composites with Poly (vinyl chloride) and Poly (ethylene terephthalate) Foam Cores. Journal of Composite Materials, Vol. 49(11), p. 1315–1329.
  • 16. Styles, M., Compston, P., Kalyanasundaram, S., 2006. The Effect of Core Thickness on the Flexural Behaviour of Aluminium Foam Sandwich Structures. Composite Structures 80 (2007) p. 532–538.
  • 17. ASTM C393/ M 393C. Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure. Annual Book of ASTM Standards. ASTM International, United States, 2011.
  • 18. DIAB Group, 2012. DIAB Guide to Core and Sandwich, Sweden. www.diabgroup.com