Parasetamolün İçme Sularından Koagülasyonla Giderimi ve Sıcaklığın Etkisi

Bu çalışmada, parasetamolün içme sularından koagülasyonla giderimi, dört farklı koagülant (FeCl3.6H2O, MgCl2.6H2O, Al2(SO4)3.18H2O, FeSO4.7H2O) kullanılarak araştırılmıştır. Tüm koagülasyon deneyleri jar test analizleri kullanılarak gerçekleştirilmiştir. Optimum pH ve koagülant dozlarının belirlenmesinden sonra sıcaklığın etkisinin incelenmesi amacıyla dört farklı sıcaklıkta (10, 15, 20 ve 25C) koagülasyon çalışmaları yapılmıştır. Parasetamolün en yüksek giderim verimi (%46) FeCl3.6H2O ile pH 11’de elde edilmiştir. FeCl3.6H2O ile optimum değerlerde 10C’de parasetamol giderim verimi %22 iken aynı şartlarda sıcaklık 25C’ye çıkarıldığında yüzde giderim verimi %53 olarak elde edilmiştir. Tüm koagülasyon deneylerinde sıcaklığın artmasıyla yüzde giderim veriminin arttığı tespit edilmiştir.

Removal of Paracetamol from Drinking Water by Coagulation and Effect of Temperature

In this study, the removal of paracetamol by using four different coagulants (FeCl3.6H2O, MgCl2.6H2O, Al2(SO4)3.18H2O, FeSO4.7H2O) from drinking water was investigated. All of the coagulation experiments were performed by using jar test. After the determination of optimum coagulant dosage and pH, coagulation experiments were performed at four different temperatures to detemine the effect of temperature. The highest removal efficiency of paracetamol was obtained with FeCl3.6H2O and at pH 11. While paracetamol removal efficiency was determined 22% with FeCl3.6H2O under optimum conditions, at 10C, it was removed with 53% efficiency at 25C under same conditions. It was determined that the removal efficiency increased with increasing temperature for all coagulation experiments.

___

  • 1. Bila, D.M., Dezotti, M., 2003. Pharmaceuticals Drugs in the Environment. Quim. Nova, 26:523-530.
  • 2. Derksen, J.G.M., Rijs, G.B.J., Jongbloed, R.H., 2004. Diffuse Pollution of Surface Water by Pharmaceutical Products. Water Sci. Technol, 49:213–221.
  • 3. Halling-Sorensen, B., Nors Nielsen, S., Lanzky, P.F., Ingerslev, F., Lutzhoft, H.C., Jorgensen, S.E., 1998. Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment a Review. Chemosphere, 36: 357–93.
  • 4. Bound, J.P., Voulvoulis, N., 2004. Pharmaceuticals in The Aquatic Environment A Comparison of Risk Assessment Strategies. Chemosphere, 56: 1143-1155.
  • 5. Zwiener, C., 2007. Occurrence and Analysis of Pharmaceuticals and Their Transformation Products in Drinking Water Treatment. Anal Bioanal Chem., 387: 1159–1162.
  • 6. Matılaınen, A., Lindqvist, N., Korhonen, S., Tuhkanen, T., 2002. Removal of Nom in The Different Stages of the Water Treatment Process. Environment International, 28(6): 457-465.
  • 7. Westerhoff, P., Yoon, Y., Snyder, S. Wert, E., 2005. Fate of Endocrine-Disruptor, Pharmaceutical, and Personal Care Product Chemicals During Simulated Drinking Water Treatment Processes, Environmental Science And Technology, 39(17): 6649-6663.
  • 8. Boyd, G.R., Reemtsma, H., Grimm, D.A., Mıtra, S., 2003. Pharmaceuticals and Personal Care Products (Ppcps) in Surface and Treated Waters of Louisiana, Usa and Ontario, Canada. Science of The Total Environment, 311(13): 135-149.
  • 9. Ternes, T.A., Meisenheimer, M., Mcdowell, D., Sacher, F., Brauch, H.J., Haist-Gulde, B., Preuss, G., Wilme, U. Zulei-Seibert, N., 2002. Removal of Pharmaceuticals During Drinking Water Treatment. Environmental Science and Technology, 36(17): 3855-3863.
  • 10. Ternes, T.A., 1998. Occurrence of Drugs in German Sewage Treatment Plants and Rivers. Water Research, 32(11): 3245-3260
  • 11. Morse, H.N., 1978. Ueber Eine Neue Darstellengsmethode der Acetylamidophenole. Ber. Deutscher. Chem. Ges. 11, 232-233.
  • 12. Von, Mering, J., 1893. Beitrage Zur Kenntniss der Antipyretica. Ter Monatsch. 7, 577-587.
  • 13. İlkaya, F., Yılmaz, M.Z., Karakus, O., 2013. Parasetamol ve Siklooksijenaz Enzim İnhibisyonu, J. Exp. Clin. Med., 30: 9-14.
  • 14. Ollers, S., Singer, H.P., Fassler, P., Muller, R.S., 2001. Simultaneous Quantification of Neutral and Acidic Pharmaceuticals and Pesticides at the Low-Ng/L Level in Surface and Waste Water. J. Chromatogr. A 911: 225–234.
  • 15. Koutsouba, V., Heberer, T.H., Fuhrmann, B., Schmidt-Baumler, K., Tsipi, D., Hiskia, A., 2003. Determination of Polar Pharmaceuticals in Sewage Water of Greece by Gas Chromatography–Mass Spectrometry, Chemosphere 51, 69–75.
  • 16. Kabak, H., Basibuyuk, M., 2012. Diklofenak ve Parasetamol’ün Aktif Çamur Tarafından Adsorbsiyonu, Ekoloji 21, 85, 41-48.
  • 17. Xiao, F., Huang, J-C. H., Zhang, B., Cui, C., 2009. Effects of Low Temperature on Coagulation Kinetics and Floc Surface Morphology Using Alum, Desalination 237: 201-213.
  • 18. Guan, D., Zhang, Z., Li, X., Lui, H., 2011. Effect of Ph and Temperature on Coagulation Efficiency in a North-China Water Treatment Plant, Advanced Metarials Research, 243-249: 4835-4838.