Experimental Evaluation of Sliding-Mode Control Techniques

Klasik kayan kipli-kontrol (KKK), doğrusal olmayan ve dayanıklı kontrol yöntemlerinden biridir. Metodun düzenli tasarım işlemi, kontrol girişi için kolay çözüm sağlar. Bu yöntemin eşleşen dış bozuculara ve belirsiz parametre değişimlerine karşı dayanıklılığı gibi çeşitli avantajları vardır. Diğer yandan, çıtırdama bu yöntemin ortak problemidir. Literatürde, çıtırdama problemini aşmak için bazı yaklaşımlar önerilmiştir. Bu çalışmada, klasik (birinci derece) KKK yöntemlerin deneysel değerlendirmesi ve pratik uygulanabilirliği araştırılmıştır. Deneysel uygulamalar, bir elektromekanik sistemin hız kontrolü ve bozucu ayarlaması üzerine yapılmıştır. Zamana bağlı grafiksel sonuçlar gösterilmiş ve performans ölçümleri tablolar halinde sunulmuştur. Deneysel sonuçlar, bazı dezavantajlarına rağmen kayan kipli kontrolün pratik kontrol sistemlerine uygulanabilirliğini göstermiştir

Kaymalı-Kutup Kontrol Tekniklerinin Deneysel Değerlendirilmesi

Sliding-mode control (SMC) is one of the robust and nonlinear control methods. Systematic design procedure of the method provides a straightforward solution for the control input. The method has several advantages such as robustness against matched external disturbances and unpredictable parameter variations. On the other hand, the chattering is a common problem for the method. Some approaches have been proposed in the literature to overcome the chattering problem. In the present paper, an experimental evaluation and practical applicability of conventional (first-order) sliding-mode control techniques are investigated. Experimental applications are performed using an electromechanical system for speed tracking control and disturbance regulation problems. The graphical results are illustrated and the performance measurements are tabulated based on time-domain analysis. The experimental results indicate the fact that the sliding-mode control is applicable to practical control systems with the cost of some disadvantages.

___

  • 1. Utkin, V. I., “Variable Structure Systems with Sliding Modes”, IEEE Transaction on Automatic Control, vol. AC-22, pp. 212-222, 1977.
  • 2. Young, K. D., Utkin, V. I., Özgüner, Ü., “A Control Engineer’s Guide to Sliding Mode Control”, IEEE Transaction on Control Systems Technology, vol. 7, pp. 328-342, 1999.
  • 3. Utkin, V. I., Chang, H. C., “Sliding Mode Control on Electromechanical Systems”, Mathematical Problems in Engineering, vol. 8, pp. 451-473, 2002.
  • 4. Xinghou, Y., Kaynak, O., “Sliding-Mode Control with Soft Computing: A Survey”, IEEE Transaction on Industrial Electronics vol. 56, pp. 3275-3285, 2009.
  • 5. Eker, İ., “Sliding Mode Control with PID Sliding Surface and Experimental Application to an Electromechanical Plant”, ISA Transactions, vol. 45, pp. 109-118, 2006.
  • 6. Cavallo, A., Natale, C., “High-Order Sliding Control of Mechanical Systems: Theory and Experiments”, Control Engineering Practice, vol. 2, pp. 1139-1149, 2004.
  • 7. Kaya, İ., “Sliding Mode Control of Stable Processes”, Industrial & Engineering Chemistry Research, vol 46, pp. 571-578, 2007.
  • 8. Tai, N. T., Ahn, K. K., “A RBF Neural network Sliding Mode Control for SMA Actuator”, International Journal of Control, Automation, and Systems, vol. 8, pp. 1296- 1305, 2010.
  • 9. Walcko, K. J., Novick, D., Nechyba, M. C., “Development of a Sliding Mode Control with Extended Kalman Filter Estimation for Subjugator”, Conference on Recent Advances in Robotics, Florida, USA, 2003.
  • 10. Akpolat, Z. H., Gökbulut, M., “Discrete Time Adaptive Reaching Law Speed Control of Electrical Drives”, Electrical Engineering, vol. 85, pp. 53-58, 2003.
  • 11. Furat, M., Eker, İ., “Computer – Aided Experimental Modeling of a Real System Using Graphical Analysis of a Step Response Data”, Computer Applications in Engineering Education, DOI: 10.1002/cae.20482
  • 12. Camacho, O., Smith, C. A., “Sliding Mode Control: An Approach to Regulate Nonlinear Chemical Processes”, ISA Transactions, vol. 39, pp. 205-218, 2000.
  • 13. Guo, L., Hung, J. Y., Nelms, R. M., “Comparative Evaluation of Sliding Mode Fuzzy Controller and PID Controller for a Boost Converter”, Electric Power Systems Research, vol. 81, pp. 99-106, 2011.
  • 14. Husain, A. R., Ahmad, M. N., Yatim, A. M., “Chattering-free Sliding Mode Control for an Active Magnetic Bearing System”, World Academy of Science, vol. 39, pp. 385-391, 2008.
  • 15. Levant, A., “Chattering Analysis”, IEEE Transaction on Automatic Control, vol. 55, no. 6, pp. 1380-1389, 2010.
  • 16. Lee, H., Utkin, V. I., “Chattering Suppression Methods in Sliding Mode Control Systems”, Annual Reviews in C ontrol, vol. 31, pp. 179- 188, 2007. 17. Utkin, V. I., Sliding Modes in Control and Optimization, Springer-Verlag, Moscow, 1991 . 18. Klan, P., Gorez, R., PI Controller Design for Actuator Preservation, Proceedings of the 17th IFAC World Congress, 2008, Korea, South.
  • 19. Eker, İ., Second-order Sliding Mode Control with Experimental Application, ISA Transactions, vol. 49, pp. 394-405, 2010.
  • 20. Seborg D E, Edgar T F, and Mellichamp D A. Process Dynamics and Control, Wiley, New York, 1989.
  • 21. Hsiao M Y, Li T H S, Lee J Z, Chao C H, and Tsai S H. Design of interval type-2 fuzzy sliding-mode controller, Information Sciences, 2008;178:1696-1716.
  • 22. Yu, X., Wang, B., Li, X., ComputerControlled Variable Structure Systems: The State of Art, IEEE Transaction on Industrial Informatics, Available online