Endüstriyel Uygulamalarda Güneş Enerjisinden Termal Olarak Yararlanma

Endüstride güneş enerjisi kullanımı ile fosil yakıtlara bağımlılık azalırken, verimlilik ve rekabet gücü artabilmektedir. Güneş enerjisinin endüstriyel uygulamalarda ekonomik olarak uygulanabilmesi için termal enerji depolama (TED) sistemlerinin kullanımı gereklidir. TED sistemleri endüstride güneş enerjisi uygulamalarının verimliliğini artırmaktadır. Endüstriyel uygulamalarda TED sistemlerinin performansı kullanılan teknolojiye, endüstriyel süreç türüne ve uygulama sıcaklık aralığına bağlıdır. Bu çalışmada güneş enerjisi endüstriyel uygulamaları ve TED sistemleri ele alınmıştır. Güneş enerjisinin ve TED sistemlerinin entegre edilebileceği endüstriyel prosesler, güneş enerjisi teknolojileri, bunların sürdürülebilirlikleri araştırılmıştır. Süt pastörizasyon prosesi örnek alınarak, güneş enerjisi ve TED sistemi entegrasyonu incelenmiştir. Yıkıntı atıklarından geliştirilen duyulur ısı depolama malzemeleri ile dolu TED sistemi entegrasyonunda %52,5 verim sağlanabileceği tespit edilmiştir.

Using Solar Thermal Energy in Industrial Applications

Industrial productivity and competitiveness can increase with decreasing dependency on fossil fuels by using solar energy in the industry. Using TES together with solar energy is needed for cost-effective solar heat industrial applications. TES systems that are used in industrial solar applications can increase the energy efficiency in industry. Performance of thermal energy storage systems mainly depends on type of TES technology, industrial process and temperature levels of processes. This study is focused on solar heat industrial processes and TES systems. Suitable industrial processes for solar and TES systems, solar energy technologies and sustainability of TES were investigated. Integration of solar energy and TES system were analyzed in a milk pasteurization process as a case study. Energy efficiency of 52,5 % was achieved by integration of TES system filled with sensible thermal energy storage materials developed from demolition wastes.

___

  • 1. International Energy Agency, Key World energy statistics, 2018.
  • 2. Enerji Verimliliği Çevresi ve Daire Başkanlığı, Yenilenebilir enerji, http://www.yegm.gov.tr /yenilenebilir.aspx (Erişim Tarihi:07.01.2020).
  • 3. Lauterbach, C., Schmitt, B., Jordan, U., Vajen, K., 2012. The Potential of Solar Heat for Industrial Processes in Germany, Renewable and Sustainable Energy Reviews, 16, 5121-5130.
  • 4. Ramos, C., Ramirez, R., Beltran, J., 2014. Potential Assessment in Mexico for Solar Process Heat Applications in Food and Textile Industries, Energy Procedia 49, 1879-1884.
  • 5. Baniassadi, A., Momen, M., Amidpour, M., 2015. A New Method for Optimization of Solar Heat Integration and Solar Fraction Targeting in Low Temperature Process Industries, Energy 90, 1674-1681.
  • 6. Kalogirou, S., 2003. The Potential of Solar Industrial Process Heat Applications, Applied Energy 76, 337–361.
  • 7. Bolognese, M., Viesi, D., Bartali, R., Crema, L., 2020. Modeling Study for Low-carbon Industrial Processes Integrating Solar Thermal Technologies. A Case Study in the Italian Alps: The Felicetti Pasta Factory, Solar Energy, 208, 548-558.
  • 8. Buscemi, A., Panno, D., Ciulla, G., Beccali, M., Lo Brano, V., 2018. Concrete Thermal Energy Storage for Linear Fresnel Collectors: Exploiting the South Mediterranean’s Solar Potential for Agri-food Processes, Energy Conversion and Management, 166, 719-734.
  • 9. Beath, A.C., 2012. Industrial Energy Usage in Australia and the Potential for Implementation of Solar Thermal Heat and Power, Energy, 43, 261-272.
  • 10. Sharma, A.K., Sharma, C., Mullick, S.C., Kandpal, T.C., 2017. Potential of Solar Industrial Process Heating in Dairy Industry in India and Consequent Carbon Mitigation, Journal of Cleaner Production, 140, 714-724.
  • 11. Paksoy, H.Ö., 2007. Thermal Energy Storage for Sustainable Energy Consumption Fundamentals, Case Studies and Design, (Editor: Paksoy H.Ö.), Part of the NATO Science Series, ISBN 978-1-4020-5290-3, 234, 428, Springer, Dordrecht.
  • 12. Konuklu, Y., Ostry, M., Paksoy, H.O., Charvat P., 2015. Review on Using Microencapsulated Phase Change Materials in Buildings, Energy and Buildings, 106, 134-155.
  • 13. IEA, International Energy Agency, 2019a. World Energy Balances Overview, https://www.iea.org/reports/world-energy- balances-overview (Erişim Tarihi:07.01.2020).
  • 14. EIA, International Energy Outlook, 2016, DOE/EIA-0484(2016), www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf. (Erişim Tarihi:07.01.2020).
  • 15. IRENA, Solar Heat for Industrial Processes Technology Brief, 2015, http://www.irena.org/DocumentDownloads/Publications/IRENA_ETSAP_Tech_Brief_E21_Solar_Heat_Industrial_2015.pdf, (Erişim Tarihi: 26.01.2020)
  • 16. Alva, G., Liu, L., Huang, X., Fang, G., 2017. Thermal Energy Storage Materials and Systems for Solar Energy Applications, Renewable and Sustainable Energy Reviews, 68, 693–706.
  • 17. Palacios, A., Barreneche, C., Navarro, M.E., Ding Y., 2020. Thermal Energy Storage Technologies for Concentrated Solar Power. A review from a materials perspective, Renewable Energy, 156, 1244-1265, https://doi.org/10.1016/j.renene.2019.10.127.
  • 18. IEA-International Energy Agency, 2015. TCP on Solar Heating and Cooling, Task 45, Seasonal Thermal Energy Storage: Report on State of the art and Further Necessary R&D, (Erişim tarihi: 01.08.2020).
  • 19. Ayappan, S., Mayilsamy, K., Sreenarayanan, V.V., 2016. Performance Improvement Studies in a Solar Greenhouse Drier Using Sensible Heat Storage Materials. Heat Mass Transf., 52, 459–467.
  • 20. Prasad, L., Muthukumar, P.. 2013. Design and Optimization of Lab-scale Sensible Heat Storage Prototype for Solar Thermal Power Plant Application. Solar Energy, 97, 217–229.
  • 21. Bruch, A., Fourmigue, J.F., Couturiebr, R., 2014. Experimental and Numerical Investigation of a Pilot-scale Thermal Oil Packed Bed Thermal Storage System for CSP Power Plant, Solar Energy, 105, 116–125.
  • 22. Cascetta, M., Cau, G., Puddu, P., Serra, F., 2015. A Study of a Packed-bed Thermal Energy Storage Device: Test Rig, Experimental and Numerical Results, Energy Procedia 81, 987-994.
  • 23. Tiskatine, R., Aharoune, A., Bouirden, L., Ihlal, A., 2017. Identification of Suitable Storage Materials for Solar Thermal Power Plant Using Selection Methodology. Applied Thermal Engineering, 117, 591-608.
  • 24. Calvet, N., Gomez, J.C., Faik, A., Roddatis, V.V., Meffre, A., Glatzmaier, G.C., Doppiu, S., Py, X., 2013. Compatibility of a Post-industrial Ceramic with Nitrate Molten Salts for Use as Filler Material in a Thermocline Storage System, Applied Energy, 109, 387-393.
  • 25. Motte, F., Falcoz, Q., Veron, E., Py, X., 2015. Compatibility Tests Between Solar Salt and Thermal Storage Ceramics from Inorganic Industrial Wastes, Applied Energy, 155, 14–22.
  • 26. Kazimirova, V., 2013. Heat Consumption and Quality of Milk Pasteurization, Acta Technologica Agriculturae, 16, 55-58.
  • 27. Meyers, S., Schmitt, B., Chester-Jones, M., Sturm, B., 2016. Energy Efficiency, Carbon Emissions and Measures Towards Their Improvement in the Food and Beverage Sector For six European Countries, Energy, 104, 266-283.
  • 28. www.botas.gov.tr (Erişim Tarihi: 17.08.2020) 29. EPA- United States Environmental Protection Agency, https://www3.epa.gov/ttnchie1/ap42/ ch01/final/c01s04.pdf (Erişim tarihi: 12.06.2020).
  • 30. Sivasakthivel, T., Murugesana, K., Sahoo, P.K., 2012. Potential Reduction in CO2 Emission and Saving in Electricity by Ground Source Heat Pump System for Space Heating Applications-A Study on Northern Part of India, Procedia Engineering 38, 970-979.
  • 31. Horta, P., 2015. Process Heat Collectors: State of the Art and Available Medium Temperature Collectors. Technical Report A.1.3, IEA SHC Task 49, 33.
  • 32. Giovennetti, F., Horta, P., 2016. Comparison of Process Heat Collectors with Respect to Technical and Economic Conditions. IEA SHC Task 49 Technical Report A.2.1, 36.
  • 33. Fischer, S., Kovacs, P., Lampe, C., Serrats E.M., 2013. IEA-SHC TASK 43: Solar Rating and Certification Procedures-White Paper on Concentrating Collectors, International Energy Agency (IEA), Technical report, 74, 2013.
  • 34. Climate-Data, https://tr.climate-data.org/asya/ tuerkiye/adana/adana-239/#climate-graph (Erişim tarihi: 01.06.2020).
  • 35. Global solar atlas, www.globalsolaratlas.info (Erişim tarihi: 01.06.2020).
  • 36. Costro, A.A., 2016. Integration of a Concentrating Solar Thermal System in an Expanded Cork Agglomerate Production Line. Yüksek Lisans Tezi, Tecnico Lisboa, 92, 2016.
  • 37. Koçak, B., Paksoy, H., 2019. Using Demolition Wastes from Urban Regeneration as Sensible Thermal Energy Storage Material. Int J Energy Res., 43, 6454–6460.
  • 38. Therminol 66 teknik veri sayfası, https://www.therminol.com/product/71093438 (Erişim tarihi: 01.06.2020).
  • 39. Kocak, B., Fernandez, A.I., Paksoy, H., 2021. Benchmarking Study of Demolition Wastes with Different Waste Materials as Sensible Thermal Energy Storage, Solar Energy Materials and Solar Cells, 219, 110777.
  • 40. IEA-ECES, 2018. Applications of Thermal Energy Storage in the Energy Transition- Benchmarks and Developments, [Gibb et al., German Aerospace Center (DLR)], IEA Technology Collaboration Programme on Energy Conservation through Energy Storage (IEA-ECES), 154.
  • 41. Tzuc, O.M., Bassam, A., Ricalde, L.J., Jaramillo, O.A., Flota-Bañuelos, M., Soberanis, M.A.E., 2020. Environmental- economic Optimization for Implementation of Parabolic Collectors in the Industrial Process Heat Generation: Case Study of Mexico, Journal of Cleaner Production, 242, 118538.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ