İdrar kotinin ve kotinin/kreatinin oranının çevresel tütün dumanı maruziyetinin bir biyolojik belirteci olarak kullanımı

Amaç: Çevresel Tütün Dumanına (ÇTD) maruz kalma, dünya çapında bir halk sağlığı sorunu olmaya devam etmektedir. Bu çalışmada, çocuklarda idrar kotinin düzeyleri ve kotinin/kreatinin oranlarını ölçerek ebeveynlerin evde sigara içme alışkanlıkları ile çocukların çevresel tütün dumanına maruz kalmaları arasındaki ilişkiyi incelemeyi amaçladık. Gereç ve Yöntem: Vaka-kontrol tipindeki analitik çalışma 0-18 yaş grubundan 357 çocuk ile yapılmıştır. Olgu grubunu çevresel sigara dumanına maruz kalan 180 çocuk oluşturdu. Kontrol grubunu herhangi bir sağlık sorunu olmayan ve çevresel sigara dumanına maruz kalmayan 177 çocuk oluşturuldu. Spot idrardaki kotinin ve kreatinin seviyeleri her iki grupta da analiz edildi. Bulgular: Ebeveynleri sigara içenlerde, kadın cinsiyette, eğitim düzeyi düşük babalarda ve evde 3 veya daha az oda bulunan çocukların idrar kotinin düzeyi istatistiksel olarak daha yüksek bulundu. Çocukların idrar kotinin/kreatinin oranı, ebeveynleri sigara içenlerde (15.91 pg/mg (1.54-147.54) - 7.90 pg/mg (1.29-68.52)), kadın cinsiyette (13.19 pg/mg (1.79-115.07) - 10.45 pg/mg (1.29-147.54)) istatistiksel olarak daha yüksek bulundu. ÇTD'ye maruz kalan gruptaki idrar kotinin seviyeleri, ÇTD'ye maruz kalan gruptan 1042 kat daha fazla etkilenmiştir [OR:1042,462, %95 GA (139.821.839-7772.246)]. Sonuç: Çalışmamızda ÇTD’ye maruz kalan çocuklarda idrar kotinin düzeyleri, ÇTD’ye maruz kalmayan çocuklara göre daha yüksek bulundu. Bu sonuçların ışığında, çocuklarda ÇTD'ye maruziyeti değerlendirmek için idrar kotinin düzeyi noninvaziv bir belirteç olarak kullanılabilir. Ebeveynler için eğitim müdahaleleri, ÇTD’ye maruz kalma konusundaki farkındalıklarını artırmak ve özellikle ev ortamında çocukların sağlığını korumak için doğru davranışları öğretmek için gereklidir.

Use of urinary cotinine and cotinine/creatinine ratio as a biomarker of environmental tobacco exposure

Purpose: Exposure to Environmental Tobacco Smoke (ETS) remains a worldwide public health problem. The purpose of this study was to investigate the relationship between parents' smoking habits at home and children's exposure to environmental tobacco smoke by measuring urinary cotinine levels and urine cotinine/creatinine ratios in children. Materials and Methods: This case-control typed analytical study was conducted with 357 children in the 0-18 age group. The case group consisted of 180 children exposed to environmental cigarette smoke. As the control group, it consisted of 177 healthy children and non-smoking in their family. The levels of cotinine and creatinine in spot urinary were analyzed in both groups. Results: The urinary cotinine level of the children was found to be statistically higher in those whose parents were smokers, female gender, fathers with a low educational level, and those with 3 or fewer rooms in the house. The urinary cotinine/creatinine ratio of the children was found to be statistically higher in those whose parents were smokers (15.91 pg/mg (1.54-147.54) vs 7.90 pg/mg (1.29-68.52)), female gender (13.19 pg/mg (1.79-115.07) vs 10.45 pg/mg (1.29-147.54)). Urinary cotinine levels in the ETS exposed group were affected 1042 times more than in the ETS unexposed group [OR:1042,462, 95% CI (139.821.839-7772.246)]. Conclusion: In the present study, urinary cotinine levels were found to be higher in children exposed to tobacco smoke than in children not exposed to tobacco smoke. In the light of these results, urinary cotinine can be used as a biomarker to evaluate exposure to ETS in children. Educating parents is essential to raising their awareness of exposure to ETS and teaching the right behaviors to protect children's health, especially in the home environment.

___

  • 1. Centers for Disease Control and Prevention (CDC) Global Youth Tobacco Survey (GYTS). https://nccd.cdc.gov/GTSSDataSurveyResources/A ncillary/Documentation.aspx?SUID=1&DOCT=1 (accessed June 2022).
  • 2. IARC monographs on the evaluation of carcinogenic risk to humans; tobacco smoke and involuntary smoking. Lyon, IARC Scientific Publications, 2004;36–40.
  • 3. WHO report on the global tobacco epidemic, 2015: raising taxes on tobacco. World Health Organization. Geneva, 2015. https://apps.who.int/iris/handle/10665/178574 (accessed June 2022).
  • 4. Protano C, Andreoli R, Mutti A, Manigrasso M, Avino P, Vitali M. Reference intervals for urinary cotinine levels and the influence of sampling time and other predictors on its excretion among Italian schoolchildren. Int J Environ Res Public Health. 2018;15:817.
  • 5. Quintana PJE, Hoh E, Dodder NG, Matt GE, Zakarian JM, Anderson KA et al. Nicotine levels in silicone wristband samplers worn by children exposed to secondhand smoke and electronic cigarette vapor are highly correlated with child's urinary cotinine. J Expo Sci Environ Epidemiol. 2019;29:733-41.
  • 6. Paci E, Pigini D, Bauleo L, Ancona C, Forastiere F, Tranfo G. Urinary cotinine concentration and self- reported smoking status in 1075 subjects living in central Italy. Int J Environ Res Public Health. 2018;15:804.
  • 7. Navas-Acien A, Peruga A, Breysse P, Zavaleta A, Blanco-Marquizo A, Pitarque R et al. Secondhand tobacco smoke in public places in Latin America, 2002–2003. JAMA. 2004;291:2741–45.
  • 8. Makadia LD, Roper PJ, Andrews JO, Tingen MS. Tobacco use and smoke exposure in children: new trends, harm, and strategies to ımprove health outcomes. Curr Allergy Asthma Rep. 2017;17:55.
  • 9. Tovar MF, Ortiz W, Valderrama MA, Rodríguez F, Gamboa O, Maldonado MJ et al. Prevalence of urinary cotinine levels in children under 5 years of age during consultations for acute respiratory disease at the emergency department of the Universidad de La Sabana clinic. BMC Pediatr. 2020;20:296.
  • 10. Jeong SH, Jang BN, Kang SH, Joo JH, Park EC. Association between parents' smoking status and tobacco exposure in school-age children: assessment using major urine biomarkers. Sci Rep. 2021;11:4536.
  • 11. Susanto AD, Putri PD, Hudoyo A, Taufik FF, Nurwidya F, Andarini S. Urinary cotinine level in Indonesian children exposed to domestic cigarette smoke. J Nat Sci Biol Med. 2018;9:77-81.
  • 12. Protano C, Andreoli R, Manini P, Vitali M. How home-smoking habits affect children: a cross-sectional study using urinary cotinine measurement in Italy. Int J Public Health. 2012;57:885-92.
  • 13. Bobrowska-Korzeniowska M, Stelmach I, Brzozowska A, Jerzyńska J, Mitał M, Stelmach W. The effect of passive smoking on exhaled nitric oxide in asthmatic children. Nitric Oxide. 2019;86:48-53.
  • 14. Public Health Institution of Turkey. Global adult tobacco survey 2012, Ankara, Turkey 2014. https://havanikoru.saglik.gov.tr/dosya/dokumanlar /yayinlar/GATS-2012-ENG-25-07-2014.pdf (accessed May 2022).
  • 15. Global adult tobacco survey, Ankara, Turkey 2016. https://extranet.who.int/ncdsmicrodata/index.php/ catalog/872 (accessed May 2022).
  • 16. Wang Y, Yang M, Huang Z, Tian L, Niu L, Xiao S. Urinary cotinine concentrations in preschool children showed positive associations with smoking fathers. Acta Paediatr. 2017;106:67-73.
  • 17. Thomas CE, Wang R, Adams-Haduch J, Murphy SE, Ueland PM, Midttun Ø et al. Urinary cotinine is as good a biomarker as serum cotinine for cigarette smoking exposure and lung cancer risk prediction. Cancer Epidemiol Biomarkers Prev. 2020;29:127-32.
  • 18. Kim J, Lee K. Changes in urinary cotinine concentrations in non-smoking adults from the Korean National Environmental Health Survey (KoNEHS) II (2012-2014) after implementation of partial smoke-free regulations. Int J Hyg Environ Health. 2020;224:113419.
  • 19. Hovanec J, Weiß T, Koch H, Pesch B, Behrens T, Kendzia B et al. Smoking and urinary cotinine by socioeconomic status in the Heinz Nixdorf Recall Study. J Epidemiol Community Health. 2019;73:489- 95.
  • 20. Achilihu H, Feng J, Wang L, Bernert JT. Tobacco use classification by inexpensive urinary cotinine immunoassay test strips. J Anal Toxicol. 2019;43:149- 53.
  • 21. Neyzi O, Furman A, Bundak R, Gökçay G, Günöz H, Darendeliler F et al. Türk çocuklarında vücut ağırlığı, boy uzunluğu, baş çevresi ve vücut kitle indeksi referans değerleri. Çocuk Sağlığı ve Hastalıkları Dergisi. 2008;51:1-14
  • 22. Chanda S, Mehendale HM. Alkalies. Encyclopedia of Toxicology, Second Ed, vol. 1. In: Wexler, Philip (Ed.): pp. 76e77. New York, Elsevier, 2005.
  • 23. Cooper R. Effect of tobacco smoking on renal function. Indian J Med Res. 2006;124:261-8.
  • 24. Matt GE, Wahlgren DR, Hovell MF. Measuring environmental tobacco smoke exposure in infants and young children through urine cotinine and memory- based parental reports: empirical findings and discussion. Tob Control. 1999;8:282-89.
  • 25. Kamer B, Pasowska R, Grys W, Socha-Banasiak A, Kamer-Bartosińska A, Matczak-Rynkowska A et al. Pre- and postnatal exposure of children to tobacco smoke during the first four years of life--observations of the authors. Ann Agric Environ Med. 2014;21:753- 9.
  • 26. Ziyab AH, Almari M, Al-Taiar A. Exposure to household secondhand smoke among adolescents in Kuwait: Results from two school-based cross- sectional studies. Tob Induc Dis. 2020;18:32.
  • 27. Campo L, Boniardi L, Polledri E, Longhi F, Scuffi C, Fustinoni S. Smoking habit in parents and exposure to environmental tobacco smoke in elementary school children of Milan. Sci Total Environ. 2021;796:148891.
  • 28. Reese AC, James IR, Landau LI, Lesof PN. Relationship between urinary cotinine level and diagnosis in children admitted to hospital. Am Rev Respir Dis. 1992;146:66-70.
  • 29. Tung KY, Wu KY, Tsai CH, Su MW, Chen CH, Lin MH et al. Association of time-location patterns with urinary cotinine among asthmatic children under household environmental tobacco smoke exposure. Environ Res. 2013;124:7-12.
  • 30. Irvine L, Crombie IK, Clark RA, Slane PW, Goodman KE, Feyerabend C et al. What determines levels of passive smoking in children with asthma? Thorax. 1997;52:766–9.
  • 31. Arvas A, Baş V, Gür E. The impact of passive smoking on the development of lower respiratory tract infection in infancy. Turk Arch Ped. 2009;44:12-7.
Cukurova Medical Journal-Cover
  • ISSN: 2602-3032
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1976
  • Yayıncı: Çukurova Üniversitesi Tıp Fakültesi
Sayıdaki Diğer Makaleler

COVID-19 pnömonisi öntanısı alan ağır solunum yetmezliği ile sonuçlanan sağ atriyal psödoanevrizma olgusu

Veysel TOSUN

Sağlıklı bir popülasyonda kardiyovasküler hastalık risk faktörleri bilgi düzeyi, Framingham skoru ve kardiyak belirteçlerin değerlendirilmesi

Ayşe Nur TOPUZ, Nafiz BOZDEMİR

CYP2C9 gen polimorfizmlerinin losartan kullanan hipertansif hastalarda tedavi yanıtı üzerine etkisi

Funda PEPEDİL TANRIKULU, Melih O. BABAOĞLU, Banu ÇAKIR, Atilla BOZKURT, Gülay Sain GÜVEN

Stabil idiyopatik pulmoner fibrozde hastalik şiddeti ve prognostik belirteçler ile matriks metallaproteinaz düzeyleri arasindaki ilişki

Oya BAYDAR TOPRAK, Ezgi ÖZYILMAZ, Yasemin SAYGIDEĞER, Efraim GÜZEL

XGBoost modeli ile gen dizileme verilerine dayalı kolorektal kanserin sınıflandırılması: Bir halk sağlığı bilişimi uygulaması

Sami AKBULUT, Zeynep KÜÇÜKAKÇALI, Cemil ÇOLAK

COVID-19'un santral sinir sistemi tutulumunu değerlendirmek için bir araç olarak manyetik rezonans görüntülemenin etkinliği

Rıdvan AÇIKALIN, Murat GOKTEN, Can SEZER

Sıçanlarda pseudomonas aeruginosa ile indüklenen kronik otitis media modelinde borik asit tedavisinin etkinliği

Abdulkadir ŞAHİN, Ayhan KARS, Muhammed Sedat SAKAT, Sinan KÖYCEĞİZ, Serkan YILDIRIM, Korhan KILIÇ

Saf torasik spinal epidural kavernöz hemanjiom (SEKH)

Özkan ÖZGER, Necati KAPLAN, Altay Tolga ŞENTÜRK

Bir ergende sifilize ikincil abdominal ven trombozu

Ersin TÖRET, Zeynep Canan ÖZDEMİR, Yalçın KARA, Çiğdem ÖZTUNALI, Özcan BÖR

Düşük riskli kadınlarda enfekte epizyotomi riskini öngören bir model

Duygu TUĞRUL ERSAK, Burak ERSAK, Uğurcan ZORLU, Mahmut Kuntay KOKANALI, Özlem MORALOĞLU TEKİN, Melike DOĞANAY