Toward the theory of semi-linear Beltrami equations

Toward the theory of semi-linear Beltrami equations

We study the semi-linear Beltrami equation $\omega_{\bar{z}}-\mu(z) \omega_z=\sigma(z)q(\omega(z))$ and show that it is closely related to the corresponding semi-linear equation of the form ${\rm div} A(z)\nabla\,U(z)=G(z) Q(U(z)).$ Applying the theory of completely continuous operators by Ahlfors-Bers and Leray-Schauder, we prove existence of regular solutions both to the semi-linear Beltrami equation and to the given above semi-linear equation in the divergent form, see Theorems 1.1 and 5.2. We also derive their representation through solutions of the semi-linear Vekua type equations and generalized analytic functions with sources. Finally, we apply Theorem 5.2 for several model equations describing physical phenomena in anisotropic and inhomogeneous media.

___

  • L. Ahlfors: Lectures on Quasiconformal Mappings, Van Nostrand, New York (1966).
  • L. V. Ahlfors, L. Bers: Riemanns mapping theorem for variable metrics, Ann. Math., 72 (2) (1960), 385–404.
  • K. Astala, T. Iwaniec and G. J. Martin: Elliptic differential equations and quasiconformal mappings in the plane, Princeton Math. Ser., 48, Princeton Univ. Press, Princeton (2009).
  • R. Aris: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, V. I–II, Clarendon Press, Oxford (1975).
  • G. I. Barenblatt, Ja. B. Zel’dovic, V. B. Librovich and G. M. Mahviladze: The mathematical theory of combustion and explosions, Consult. Bureau, New York (1985).
  • B. Bojarski, V. Gutlyanskii, O. Martio and V. Ryazanov: Infinitesimal geometry of quasiconformal and bi-lipschitz mappings in the plane, EMS Tracts in Mathematics, 19, European Mathematical Society, Zürich (2013).
  • L. E. J. Brouwer: Über Abbildungen von Mannigfaltigkeiten, Math. Ann., 71 (1912), 97–115.
  • J. I. Diaz: Nonlinear partial differential equations and free boundaries. V. I. Elliptic equations., Research Notes in Mathematics, 106, Pitman, Boston (1985).
  • G. Dinca, J. Mawhin: Brouwer degree - the core of nonlinear analysis, Progress in Nonlinear Differential Equations and their Applications, 95, Birkhäuser, Springer, Cham, (2021).
  • O. P. Dovhopiatyi, E. A. Sevost’yanov: On the existence of solutions of quasilinear Beltrami equations with two characteristics, Ukrainian Math. J., 74 (7) (2022), 1099–1112.
  • N. Dunford, J. T. Schwartz: Linear Operators. I. General Theory, Pure and Applied Mathematics, 7, Interscience Publishers, New York, London, (1958).
  • V. Gutlyanskii, O. Nesmelova and V. Ryazanov: On a model semilinear elliptic equation in the plane, J. Math. Sci. (USA), 220 (5) (2017), 603–614.
  • V. Gutlyanskii, O. Nesmelova and V. Ryazanov: On quasiconformal maps and semi-linear equations in the plane, J. Math. Sci. (USA), 229 (1) (2018), 7–29.
  • V. Gutlyanskii, O. Nesmelova and V. Ryazanov: To the theory of semi-linear equations in the plane, J. Math. Sci. (USA), 242 (6) (2019), 833–859.
  • V. Gutlyanskii, O. Nesmelova and V. Ryazanov: On a quasilinear Poisson equation in the plane, Anal. Math. Phys., 10 (1) (2020), Paper No. 6, 14 pp.
  • V. Gutlyanskii, O. Nesmelova and V. Ryazanov: Semi-linear equations and quasiconformal mappings, Complex Var. Elliptic Equ., 65 (5) (2020), 823–843.
  • [V. Gutlyanskii, O. Nesmelova, V. Ryazanov and A. Yefimushkin: On boundary-value problems for semi-linear equations in the plane, J. Math. Sci. (USA), 259 (1) (2021), 53–74.
  • V. Gutlyanskii, O. Nesmelova, V. Ryazanov and A. Yefimushkin: Logarithmic potential and generalized analytic functions, J. Math. Sci. (USA), 256 (6) (2021), 735–752.
  • J. Heinonen, T. Kilpelainen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford-New York-Tokyo (1993).
  • E. Karapinar: A short survey on the recent fixed point results on b-metric spaces, Constr. Math. Anal. 1 (1)(2018), 15–44.
  • O. Lehto, K. J. Virtanen: Quasiconformal mappings in the plane, Springer-Verlag, Berlin, Heidelberg (1973).
  • J. Leray, Ju. Schauder: Topologie et equations fonctionnelles, Ann. Sci. Ecole Norm. Sup., 51 (3) (1934), 45–78 (in French).
  • M. Marcus, L. Veron: Nonlinear second order elliptic equations involving measures, De Gruyter Series in Nonlinear Analysis and Applications, 21, De Gruyter, Berlin (2014).
  • V. G. Maz’ja: Sobolev spaces, Springer-Verlag, Berlin (1985).
  • J. Mawhin: Leray-Schauder continuation theorems in the absence of a priori bounds, Topol. Methods Nonlinear Anal., 9 (1) (1997), 179–200.
  • H. K. Pathak: An introduction to nonlinear analysis and fixed point theory, Springer, Singapore (2018).
  • S. I. Pohozhaev: Concerning an equation in the theory of combustion, Math. Notes, 88 (1) (2010), 48–56.
  • V. Ryazanov: On Hilbert and Riemann problems for generalized analytic functions and applications, Anal. Math. Phys., 11 (1) (2021), Paper No. 5, 18 pp.
  • V. Ryazanov: Dirichlet problem with measurable data in rectifiable domains, Filomat, 36 (6) (2022), 2119–2127.
  • E. A. Sevost’yanov: On quasilinear Beltrami-type equations with degeneration, Math. Notes 90 (3) (2011), 431–438.
  • S. L. Sobolev: Applications of functional analysis in mathematical physics, Transl. of Math. Mon., 7, AMS, Providence, R.I. (1963).
  • W. Varnhorn: On the Poisson equation in exterior domains, Constr. Math. Anal. 5 (3) (2022), 134–140.
  • I. N. Vekua: Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass (1962).
  • L. Veron: Local and global aspects of quasilinear degenerate elliptic equations. Quasilinear elliptic singular problems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2017).