Strong Converse Inequalities and Qantitative Voronovskaya-Type Theorems for Trigonometric Fej\'er Sums

Strong Converse Inequalities and Qantitative Voronovskaya-Type Theorems for Trigonometric Fej\'er Sums

Let $\sigma_n$ denotes the classical Fej\'er operator for trigonometric expansions. For a fixed even integer $r$, we characterize the rate of convergence of the iterative operators $(I-\sigma_n)^r(f)$ in terms of the modulus of continuity of order $r$ (with specific constants) in all $\mathbb{L}^p$ spaces $1\leq p \leq \infty$. In particular, the constants depend not on $p$. Moreover, we present a quantitative version of the Voronovskaya-type theorems for the operators $(I-\sigma_n)^r(f)$.

___

  • T. Acar, A. Aral, and I. Ra\c{s}a, The new forms of Voronovskaya’s theorem in weighted spaces, Positivity, 20 (2016), 25-40.
  • A. Aral, H. Gonska, M. Heilmann, and G. Tachev, Quantitative Voronovskaya-type results for polynomially bounded functions, Results. Math. 70 (2016), 313-324.
  • J. Bustamante, Direct and strong converse inequalities for approximation with Fej\'er means, to appear.
  • P. L. Butzer and E. Gorlich, Saturationsklassen und asymptotische Eigens\-ch\-ten tri\-go\-no\-me\-tris\-cher singul\"arer Integrale, Festschrift zur Gedächtnisfeier f\"{u}r Karl Weierstra{\ss 1815-1965Arbeitsgemeinschaft f\"ur Forschung des Lan\-des Nordrhein-Westfalen, Bd. 33, K\"oln (1966), 339-392.
  • J. Czipszer and G. Freud, Sur l'approximation d'une fonction p\'eriodique et de ses d\'eriv\'ees successives par un polynome trigonometrique et par ses d\'eriv\'ees succesives, Acta Math. 99 (1958), 33-51.
  • C. de la Vall\'ee Poussin, Le\c{c}ons sur l'Approximation des fonctions d'une variable r\'eelle, Paris, Gauthier-Villars, 1919.
  • Z. Ditzian and K. Ivanov, Strong converse inequalities, J. Analyse Math., 61 (1993), 61-111.
  • S. Foucart, Y. Kryakin and A. Shadrin, On the exact constant in the Jackson-Stechkin inequality for the uniform metric, Constr. Approx. 29 (2009), 157-179.
  • G. Freud, \"Uber gleichzeitige Approximation einer Funktion und ihrer Derivierten, Intern. Math. Nachrichten, Wien, 47/49 (1957), 36-37.
  • H. Gonska, On the degree of approximation in Voronovskaja’s theorem, Studia Univ. Babe\c{s}-Bolyai, Mathematica 52 (3) (2007), 103-116.
  • H. Gonska and I. Ra\c{s}a, Remarks on Voronovskaya’s theorem, General Mathematics, 16 (4) (2008), 87-97.
  • N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines, (Russian) Naukova Dumka, Kiev, 1992.
  • R. E. A. C. Paley and A. Zygmund, On the partial sums of Fourier series, Studia Mathematica, Vol. 2 (1930), 221-227.
  • A. F. Timan, Theory of Approximation of Functions of Real Variable, Pergamon Press, 1963.
  • M. Zamansky, Classes de saturation de certains proc\'ed\'es d'approximation des s\'eries de Fourier des fonctions continues et application \`{a} quelques probl\`{e}mes d'approximation, Ann. Sci. Ecole Normale Sup., 3 (66) (1949), 19-93.
  • M. Zamansky, Classes de saturation des proc\'ed\'es de sommation des s\'eries de Fourier et application aux s\'eries trigonom\'etriques, Ann. Sci. Ecole Normale Sup., 67 (1950), 161-198.