Parameters in Banach spaces and orthogonality

Parameters in Banach spaces and orthogonality

In Banach spaces, plenty of parameters have been considered: they are often defined by using pairs of vectors. Rarely, they are defined by considering pairs of vectors which are orthogonal in the sense of Birkhoff and James; in that case the study is often not easy. In fact, it can be difficult to identify pairs of orthogonal vectors; so to calculate the value of these parameters, to compare them with the other parameters, to see if they have some stability with respect to changes of the norm. In this paper, we shall do this for a couple of new parameters.

___

  • J. Alonso, H. Martini and S. Wu: On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces, Aequationes Math., 83 (1-2) (2012), 153–189.
  • M. Baronti, E. Casini and P. L. Papini: Revisiting the rectangular constant in Banach spaces, Bull. Aust. Math. Soc., 105 (1) (2022), 124–133.
  • E. Casini: About some parameters of normed linear spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 80 (1986), 11–15.
  • M. Kato, L. Maligranda and Y. Takahashi: On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math., 144 (3) (2001), 275–295.
  • P. L. Papini: Constants and symmetries in Banach spaces, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 56 (2002), 65–76.
  • I. Şerb: On a modified modulus of smoothness of a Banach space, Rev. Anal. Numér. Théor. Approx., 22 (2) (1993), 217–224.
  • C. S. Yang, H. Y. Li: The James constant for the $\ell_3 - \ell_1$ space, Acta Math. Sin. (Engl. Ser.), 32 (9) (2016), 1075–1079.