Construction of rational interpolations using Mamquist-Takenaka systems

Construction of rational interpolations using Mamquist-Takenaka systems

Rational functions have deep system-theoretic significance. They represent the natural way of modeling linear dynamical systems in the frequency (Laplace) domain. Using rational functions, the goal of this paper to compute models that match (interpolate) given data sets of measurements. In this paper, the authors show that using special rational orthonormal systems, the Malmquist-Takenaka systems, it is possible to write the rational interpolant $r_{(n, m)}$, for $n=N-1, m=N$ using only $N$ sampling nodes (instead of $2N$ nodes) if the interpolating nodes are in the complex unit circle or on the upper half-plane. Moreover, the authors prove convergence results related to the rational interpolant. They give an efficient algorithm for the determination of the rational interpolant.

___

  • J. P. Berrut, L. N. Trefethen: Barycentric lagrange interpolation, SIAM REVIEW, 46 (3) (2004), 501–517.
  • M. M. Džrbašjan: Expansions in systems of rational functions with fixed poles, Izv. Akad. Nauk Arm. SSR, Ser. Mat., 2 (1) (1967), 3–51.
  • M. M. Džrbašjan: Biorthogonal Systems of Rational Functions and best Approximation of the Cauchy Kernel on the Real Axis, Sbornik: Mathematics, 24 (3) (1974), 409–433.
  • T. Eisner, M. Pap: Discrete orthogonality of the Malmquist-Takenaka system of the upper half plane and rational interpolation, J. Fourier Anal. Appl., 20 (4) (2014), 1–16.
  • S. Fridli, P. Kovács, L. Lócsi and F. Schipp: Rational modeling of multi-lead QRS complexes in ECG signals, Annales Univ. Sci, Budapest., Sect. Comp., 36 (2012), 145–155.
  • S. Fridli, L. Lócsi and F. Schipp: Rational function systems in ECG processing, in R. Moreno-Diaz et al. (Eds.) EUROCAST 2011 (2011), 88–95.
  • S. Fridli, F. Schipp: Discrete rational biorthogonal systems on the disc, Annales Univ. Sci. Budapest., Sect. Comp., 50 (2020), 127–134.
  • M. Gaál, B Nagy, Zs. Nagy-Csiha and Sz. Gy. Révész: Minimal energy point system on the unit circle and the real line, SIAM J. Math. Anal., 52 (6) (2020), 6281–6296.
  • J. B. Garnett: Bounded Analytic Functions, Academic Press (1981).
  • K. Hoffman: Banach spaces of analytic functions, Prentice Hall Inc. (1962).
  • A. C. Ionita: Lagrange rational interpolation and its applications to approximation of large-scale dynamical systems, Rice University’s digital scholarship archive (2013).
  • G. G. Lorentz, M. Golitschek and Y. Makovoz: Constructive Approximation: Advanced Problems, Springer Berlin Heidelberg (1996).
  • F. Malmquist: Sur la détermination d’une classe functions analytiques par leurs dans un esemble donné de points, Compute Rendus Six. Cong. math. scand. Kopenhagen, Denmark (1925), 253–259.
  • Zs. Nagy-Csiha, M. Pap: Discrete biorthogonal systems and equilibrium condition in the Hardy space of unit disc and upper half-plane, Mathematical Methods for Engineering Applications. ICMASE 2021. Springer Proceedings in Mathematics and Statistics, vol 384. Springer (2022), 291–301.
  • M. Pap: Hyperbolic wavelets and multiresolution in H2(T), Journal of Fourier Analysis and Applications, 17 (2011), 755–776.
  • M. Pap, F. Schipp: Malmquist-Takenaka systems and equilibrium conditions, Math. Pannon., 12 (2) (2001), 185-194.
  • M. Pap, F. Schipp: Equilibrium conditions for the Malmquist-Takenaka systems, Acta Sci. Math. (Szeged), 81 (3-4) (2015), 469–482.
  • Z. Szabó: Rational orthonormal functions and applications. PhD Thesis, Eötvös Loránd University, Budapest (2001).
  • Z. Szabó: Interpolation and quadrature formulae for rational systems on the unit circle, Annales Univ. Sci. Budapest., Sect. Comp., 21 (2004), 41–56.
  • S. Takenaka: On the orthogonal functions and a new formula of interpolation, Japanese J. Math. II. (1925), 129–145.