Solution of Singular Integral Equations of the First Kind with Cauchy Kernel

Solution of Singular Integral Equations of the First Kind with Cauchy Kernel

In this paper an analytic method is developed for solving Cauchy type singular integral equations of the first kind, over a finite interval. Chebyshev polynomials of the first kind, $T_n(x)$, second kind, $U_n(x)$, third kind, $V_n(x)$, and fourth kind, $W_n(x)$, corresponding to respective weight functions $W^{(1)}(x)=\frac{1}{\sqrt{1-x^2}},W^{(2)}(x)=\sqrt{1-x^2},W^{(3)}(x)=\sqrt{\frac{1+x}{1-x}},$ and $~ W^{(3)}(x)=\sqrt{\frac{1-x}{1+x}}, $ have been used to obtain the complete analytical solutions for four different cases.

___

  • [1] N. I. Mushkelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953.
  • [2] F.D. Gakhov, Boundary Value Problems, Addison-Wesley, 1966.
  • [3] P. A. Martin, F. S. Rizzo, On boundary integral equations for crack problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 421 (1989), 341-345.
  • [4] S. Kim, Solving singular integral equations using Gaussian quadrature and overdetermined system, Appl. Math. Comput., 35 (1998), 63-71.
  • [5] A. Chakrabarti, V. G. Berghe, Approximate solution of singular integral equations, Appl. Math. Lett., 17 (2004), 553-559.
  • [6] M. M. Panja, B. N. Mandal, Solution of second kind integral equation with Cauchy type kernel using Daubechies scale function, J. Comput. Appl. Math., 241 (2013), 130-142.
  • [7] M. Abdulkawi, Solution of Cauchy type singular integral equations of first kind by using differential transform method, Appl. Math. Model., 39 (2015), 2107-2118.
  • [8] S. Mondal, B. N. Mandal, A note on the solution of a simple hypersingular integral equation, Glob. J. Pure Appl. Math., 13 (2017), 1959-1964.
  • [9] J.C. Mason, Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms, J. Comput. Appl. Math., 49 (1993), 169-178.
  • [10] Z. K. Eshkuvatov, N. M. A. Nik Long, M. Abdulkawi, Approximate solution of singular integral equations of the first kind with Cauchy kernel, Appl. Math. Lett., 22 (2009), 651-657.