Practice of the Incomplete $p$-Ramification Over a Number Field -- History of Abelian $p$-Ramification

Practice of the Incomplete $p$-Ramification Over a Number Field -- History of Abelian $p$-Ramification

The theory of $p$-ramification, regarding the Galois group of the maximal pro-$p$-extension of a number field $K$, unramified outside $p$ and $\infty$, is well known including numerical experiments with PARI/GP programs. The case of ``incomplete $p$-ramification'' (i.e., when the set $S$ of ramified places is a strict subset of the set $P$ of the $p$-places) is, on the contrary, mostly unknown in a theoretical point of view. We give, in a first part, a way to compute, for any $S \subseteq P$, the structure of the Galois group of the maximal $S$-ramified abelian pro-$p$-extension $H_{K,S}$ of any field $K$ given by means of an irreducible polynomial. We publish PARI/GP programs usable without any special prerequisites. Then, in an Appendix, we recall the ``story'' of abelian $S$-ramification restricting ourselves to elementary aspects in order to precise much basic contributions and references, often disregarded, which may be used by specialists of other domains of number theory. Indeed, the torsion ${\mathcal T}_{K,S}$ of ${\rm Gal}(H_{K,S}/K)$ (even if $S=P$) is a fundamental obstruction in many problems. All relationships involving $S$-ramification, as Iwasawa's theory, Galois cohomology, $p$-adic $L$-functions, elliptic curves, algebraic geometry, would merit special developments, which is not the purpose of this text.

___

  • [1] G. Gras, Class Field Theory: From Theory to Practice, corr. 2nd ed., Springer Monographs in Mathematics, Springer, 2005, xiii+507 pages.
  • [2] J-P. Serre, Cohomologie galoisienne, Lect. Notes in Math. 5, Springer-Verlag 1964, cinquieme ´edition 1991; English translation: Galois cohomology, Springer 1997; corrected second printing: Springer Monographs in Math., 2002.
  • [3] I. R. ˇSafareviˇc, Extensions with given points of ramification, Publ. Math. Inst. Hautes Etudes Sci., 18 (1964), 71–95; American Math. Soc. Transl., Ser. 2, 59 (1966), 128–149.
  • [4] A. Brumer, Galois groups of extensions of algebraic number fields with given ramification, Michigan Math. J., 13 (1966), 33–40.
  • [5] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Springer-Verlag (2000), 2nd edition, Grundlehren der Math. Wissenschaften 323, Springer-Verlag, 2008.
  • [6] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted ramification, J. Reine Angew. Math., 400 (1989), 185–202.
  • [7] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted ramification II, J. Reine Angew. Math., 416 (1991), 187–194.
  • [8] M. Yamagishi, A note on free pro-p-extensions of algebraic number fields, J. Theor. Nombres Bordeaux, 5(1) (1993), 165–178.
  • [9] C. Maire, On the Z-rank of abelian extensions with restricted ramification, J. Number Theory, 92 (2002), 376–404.
  • [10] C. Maire, On the Z-rank of abelian extensions with restricted ramification (addendum), J. Number Theory, 98 (2003), 217–220.
  • [11] C. Maire, Sur la dimension cohomologique des pro-p-extensions des corps de nombres, J. Theor. Nombres Bordeaux, 17(2) (2005), 575–606.
  • [12] J. Labute, Mild pro-p-groups and Galois groups of p-extensions of Q, J. Reine Angew. Math., 596 (2006), 155–182.
  • [13] J. Labute, J. Minac, Mild pro-2-groups and 2-extensions of Q with restricted ramification, J. Algebra, 332(1) (2011), 136–158.
  • [14] D. Vogel, p-extensions with restricted ramification – The mixed case (2007), available at https://epub.uni-regensburg.de/13820/
  • [15] O. Neumann, On p-closed number fields and an analogue of Riemann’s existence theorem. Algebraic number fields: L-functions and Galois properties, Proc. Sympos., Univ. Durham (1975), pp. 625–647. Academic Press, London, 1977.
  • [16] T. Nguyen Quang Do, Sur la Zp-torsion de certains modules galoisiens, Ann. Inst. Fourier, 36(2) (1986), 27–46.
  • [17] J-F. Jaulent, Th´eorie `-adique globale du corps de classes, J. Th´eor. Nombres Bordeaux, 10(2) (1998), 355–397.
  • [18] F. Bertrandias, J-J. Payan, G-extensions et invariants cyclotomiques, Ann. Sci. Ec. Norm. Sup. 4e serie, 5(4) (1972), 517–548.
  • [19] G. Gras, The p-adic Kummer-Leopoldt Constant: Normalized p-adic Regulator, Int. J. Number Theory, 14(2) (2018), 329–337.
  • [20] G. Gras, On p-rationality of number fields. Applications–PARI/GP programs, Pub. Math. Besanc¸on (Theorie des Nombres), Ann´ees 2018/2019 (2019), arxiv:1709.06388 [math.NT]
  • [21] I. B. Fesenko, S. V. Vostokov, Local Fields and Their Extensions, American Math. Soc., Translations of Math. Monographs, 121, Second Edition, 2002.
  • [22] J-F. Jaulent, Sur l’ind´ependance `-adique de nombres alg´ebriques, J. Number Theory, 20 (1985), 149–158.
  • [23] D. Nelson, A variation on Leopoldt’s conjecture: some local units instead of all local units (2013), arxiv:1308.4637 [math.NT]
  • [24] The PARI Group –PARI/GP, version 2.9.0, Universit´e de Bordeaux (2016).
  • [25] A. Movahhedi, Sur les p-extensions des corps p-rationnels, Th`ese, Univ. Paris VII, 1988.
  • [26] A. Movahhedi, Sur les p-extensions des corps p-rationnels, Math. Nachr., 149 (1990), 163–176.
  • [27] J-F. Jaulent, O. Sauzet, Pro-`-extensions de corps de nombres `-rationnels, J. Number Theory, 65 (1997), 240–267; ibid. 80 (2000), 318–319.
  • [28] J-F. Jaulent, O. Sauzet, Extensions quadratiques 2-birationnelles de corps de nombres totalement r´eels, Pub. Matem`atiques, 44 (2000), 343–351.
  • [29] C. Bourbon, J-F. Jaulent, Propagation de la 2-birationalit´e, Acta Arithmetica, 160 (2013), 285–301.
  • [30] G. Gras, Heuristics and conjectures in the direction of a p-adic Brauer–Siegel theorem, Math. Comp., 88(318) (2019), 1929–1965.
  • [31] E. Lecouturier, On the Galois structure of the class group of certain Kummer extensions, J. London Math. Soc. (2), 98 (2018), 35–58.
  • [32] K. Schaefer, E. Stubley, Class groups of Kummer extensions via cup products in Galois cohomology, Trans. Amer. Math. Soc., Published electronically: May 30, 2019
  • [33] J. Coates, Y. Li, Non-vanishing theorems for central L-values of some elliptic curves with complex multiplication (2018), (in press).
  • [34] J. Coates, Y. Li, Non-vanishing theorems for central L-values of some elliptic curves with complex multiplication II (2019), (in press).
  • [35] T. Nguyen Quang Do, Sur la structure galoisienne des corps locaux et la th´eorie d’Iwasawa, Compositio Math., 46(1) (1982), 85–119.
  • [36] H. Koch, Galois theory of p-extensions (English translation of “Galoissche Theorie der p-Erweiterungen”, 1970), Springer Monographs in Math., Springer, 2002.
  • [37] F. Hajir, C. Maire, Tamely ramified towers and discriminant bounds for number fields, Compositio Math., 128(1) (2001), 35–53.
  • [38] F. Hajir, C. Maire, Tamely ramified towers and discriminant bounds for number fields II, J. of Symbolic Computation, 33(4) (2002), 415–423.
  • [39] F. Hajir, C. Maire, Extensions of number fields with wild ramification of bounded depth, International Mathematics Research Notices, 13 (2002), 667–696.
  • [40] C. Maire, Cohomology of number fields and analytic pro-p-groups, Mosc. Math. J., 10(2) (2010), 399–414, 479.
  • [41] C. Maire, On the quotients of the maximal unramified 2-extension of a number field, Documenta Mathematica, 23 (2018), 1263–1290.
  • [42] F. Hajir, C. Maire, Analytic Lie extensions of number fields with cyclic fixed points and tame ramification (2018), (in press).
  • [43] F. Hajir, C. Maire, Prime decomposition and the Iwasawa mu-invariant, Math. Proc. Camb. Phil. Soc., 166 (2019), 599–617. Published online: 26 April 2018.
  • [44] O. Neumann, On p-closed algebraic number fields with restricted ramification, Izv. Akad. Nauk USSR, ser. Math. 39, 2 (1975), 259–271; English translation: Math. USSR, Izv., 9 (1976), 243–254.
  • [45] K. Haberland, Galois cohomology of algebraic number fields. With two appendices by Helmut Koch, Thomas Zink, V.E.B. Deutscher Verlag der Wissenschaften, 1978.
  • [46] A. Schmidt, Uber pro-p-fundamentalgruppen markierter arithmetischer kurven, J. Reine Angew. Math., 640 (2010), 203–235.
  • [47] A. El Habibi, M. Ziane, p-Rational Fields and the Structure of Some Modules (2018), arxiv:1804.10165 [math.NT].
  • [48] T. Kubota, Galois group of the maximal abelian extension of an algebraic number field, Nagoya Math. J., 12 (1957), 177–189.
  • [49] H. Miki, On the maximal abelian `-extension of a finite algebraic number field with given ramification, Nagoya Math. J., 70 (1978), 183–202.
  • [50] G. Gras, Groupe de Galois de la p-extension ab´elienne p-ramifi´ee maximale d’un corps de nombres, J. Reine Angew. Math., 333 (1982), 86–132, doi: 10.1515/crll.1982.333.86
  • [51] G. Gras, Th´eor`emes de r´eflexion, J. Th´eor. Nombres Bordeaux, 10(2) (1998), 399–499.
  • [52] G. Gras, New criteria for Vandiver’s conjecture using Gauss sums. Heuristics and numerical experiments (2019), arxiv:1808.03443 [math.NT]
  • [53] J.S. Ellenberg, A. Venkatesh, Reflection principles and bounds for class group torsion, Int. Math. Res. Not., 2007(1) (2007).
  • [54] G. Gras, Annihilation of torZp (G ab K;S) for real abelian extensions K=Q, Communications in Advanced Mathematical Sciences, 1(1) (2018), 5–34.
  • [55] B. Oriat, Lien alg´ebrique entre les deux facteurs de la formule analytique du nombre de classes dans les corps abeliens, Acta Arithmetica, 46 (1986), 331–354.
  • [56] Y. Amice, J. Fresnel, Fonctions zˆeta p-adiques des corps de nombres ab´eliens r´eels, Acta Arithmetica, 20(4) (1972), 353–384.
  • [57] J. Coates, p-adic L-functions and Iwasawa’s theory, In: Proc. of Durham Symposium 1975, New York-London, (1977), 269–353.
  • [58] J-P. Serre, Sur le r´esidu de la fonction zˆeta p-adique d’un corps de nombres, C.R. Acad. Sci. Paris, 287(S´erie I) (1978), 183–188.
  • [59] P. Colmez, R´esidu en s = 1 des fonctions zˆeta p-adiques, Invent. Math., 91 (1988), 371–389. [60] J. Assim, A. Movahhedi, Galois codescent for motivic tame kernels (2019), (in press).
  • [61] G. Gras, E´tude d’invariants relatifs aux groupes des classes des corps abe´liens, Journe´es Arithme´tiques de Caen (Univ. Caen, Caen, 1976), Ast´erisque, No. 41–42, Soc. Math. France, Paris (1977), pp. 35–53
  • [62] K. A. Ribet, Bernoulli numbers and ideal classes, Gaz. Math., 118 (2008), 42–49.
  • [63] G. Gras, Logarithme p-adique et groupes de Galois, J. Reine Angew. Math., 343 (1983), 64–80.
  • [64] G. Gras, Sur la p-ramification ab´elienne, Conf´erence donn´ee `a l’University Laval, Qu´ebec, Mathematical series of the department of mathematics, 20 (1984), 1–26.
  • [65] G. Gras, Remarks on K2 of number fields, J. Number Theory, 23(3) (1986), 322–335.
  • [66] G. Gras, Plongements kumm´eriens dans les Zp-extensions, Compositio Math., 55(3) (1985), 383–396.
  • [67] J-F. Jaulent, Larithmetique des-extensions Th`ese de doctorat d’Etat, Pub. Math. Besanc¸on (Th´eorie des Nombres) (1986), 1–349.
  • [68] C. Chevalley, Sur la th´eorie du corps de classes dans les corps finis et les corps locaux, Th`ese no. 155, Jour. of the Faculty of Sciences Tokyo, 2 (1933), 365–476.
  • [69] J-F. Jaulent, S-classes infinitesimales d’un corps de nombres alg´ebriques, Ann. Sci. Inst. Fourier, 34(2) (1984), 1–27.
  • [70] A. Movahhedi, T. Nguyen Quang Do, Sur l’arithm´etique des corps de nombres p-rationnels, S´eminaire de Th´eorie des Nombres, Paris 1987–88, Progress in Math., 81 (1990), 155–200.
  • [71] G. Gras, J-F. Jaulent, Sur les corps de nombres r´eguliers, Math. Z., 202(3) (1989), 343–365.
  • [72] J-F. Jaulent, T. Nguyen Quang Do, Corps p-rationnels, corps p-r´eguliers et ramification restreinte, J. Th´eor. Nombres Bordeaux, 5 (1993), 343–363.
  • [73] J-F. Jaulent, Classes logarithmiques des corps de nombres, J. Th´eor. Nombres Bordeaux, 6 (1994), 301–325.
  • [74] J-F. Jaulent, Classes logarithmiques des corps totalement r´eels, Acta Arithmetica, 103 (2002), 1–7.
  • [75] L. J. Federer, B. H. Gross, (with an appendix by W. Sinnott), Regulators and Iwasawa Modules, Invent. Math., 62(3) (1981), 443–457.
  • [76] L. V. Kuzmin, The Tate module of algebraic number fields, Izv. Akad. Nauk SSSR, 36 (1972), 267–327.
  • [77] J-F. Jaulent, Sur les conjectures de Leopoldt et de Gross, Actes des Journ´ees Arithm´etiques de Besanc¸on (1985), Ast´erisque, 147/148 (1987), 107–120.
  • [78] J-F. Jaulent, Sur les normes cyclotomiques et les conjectures de Leopoldt et de Gross-Kuz’min, Annales. Math. Quebec, 41 (2017), 119–140.
  • [79] J-F. Jaulent, Classes logarithmiques et capitulation, Functiones et Approximatio, 54(2) (2016), 227–239.
  • [80] J-F. Jaulent, Sur la capitulation pour le module de Bertrandias-Payan, Pub. Math. Besanc¸on (Th´eorie des Nombres) (2016), 45–58.
  • [81] J-F. Jaulent, Principalisation ab´elienne des groupes de classes de rayons (2018), (in press).
  • [82] J-F. Jaulent, Principalisation ab´elienne des groupes de classes logarithmiques, Funct. Approx. Comment. Math., 61(2) (2019), 257-275.
  • [83] R. I. Berger, G. Gras, Regular fields: normic criteria in p-extensions, Pub. Math. Besanc¸on (Th´eorie des Nombres), Annees 1991/92.
  • [84] T. Nguyen Quang Do, Lois de r´eciprocit´e primitives, Manuscripta Math., 72(1) (1991), 307–324.
  • [85] J-F. Jaulent, La th´eorie de Kummer et le K2 des corps de nombres, J. Th´eor. Nombres Bordeaux, 2 (1990), 377-411.
  • [86] K. Belabas, J-F. Jaulent, The logarithmic class group package in PARI/GP, Pub. Math. Besanc¸on (Th´eorie des Nombres) (2016), 5–18.
  • [87] T. Nguyen Quang Do, Analogues sup´erieurs du noyau sauvage, J. Th´eor. Nombres Bordeaux, 2(4) (1991), 263–271.
  • [88] J-F. Jaulent, A. Michel, Approche logarithmique des noyaux ´etales des corps de nombres, J. Number Theory, 120 (2006), 72–91.
  • [89] K. Hutchinson, Tate kernels, ´etale K-theory and the Gross kernel, (2017), arxiv:1709.06465 [math.NT].
  • [90] F. Hajir, C. Maire, R. Ramakrishna, Cutting towers of number fields, (2019), arxiv:1901.04354 [math.NT].
  • [91] F. Hajir, C. Maire, R. Ramakrishna, Infinite class field towers of number fields of prime power discriminant, (2019), arxiv:1904.07062 [math.NT].
  • [92] A. Angelakis, P. Stevenhagen, Absolute abelian Galois groups of imaginary quadratic fields, In: proceedings volume of ANTS-X, UC San Diego 2012, OBS 1 (2013).
  • [93] A. Angelakis, Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves, Thesis University Bordeaux I and University Leiden, 2015.
  • [94] M. Onabe, On the isomorphisms of the Galois groups of the maximal abelian extensions of imaginary quadratic fields, Natur. Sci. Rep. Ochanomizu Univ., 27(2) (1976), 155–161.
  • [95] G. Gras, On the structure of the Galois group of the Abelian closure of a number field, J. Th´eor. Nombres Bordeaux, 26(3) (2014), 635–654.
  • [96] G. Gras, Les q-regulateurs locaux d’un nombre alg´ebrique : Conjectures p-adiques, Canadian J. Math., 68(3) (2016), 571–624.
  • [97] E.Z. Goren, Hasse invariants for Hilbert modular varieties, Isr. J. Math., 122 (2001), 157–174.
  • [98] G. Boeckle, D.-A. Guiraud, S. Kalyanswamy, C. Khare, Wieferich Primes and a mod p Leopoldt Conjecture, (2018), arxiv:1805.00131 [math.NT].
  • [99] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98(1) (1976), 263–284.
  • [100] T. Nguyen Quang Do, Formules de genres et conjecture de Greenberg, Ann. Math. Qu´ebec, 42(2) (2018), 267–280.
  • [101] G. Gras, Approche p-adique de la conjecture de Greenberg pour les corps totalement r´eels, Ann. Math. Blaise Pascal, 24(2) (2017), 235–291.
  • [102] G. Gras, Normes dideaux dans la tour cyclotomique et conjecture de Greenberg, Ann. Math. Qu´ebec, Online: 17 October 2018, 1–32.
  • [103] J-F. Jaulent, Normes universelles et conjecture de Greenberg, (2019), arxiv:1904.07014 [math.NT].
  • [104] J-F. Jaulent, Note sur la conjecture de Greenberg, J. Ramanujan Math. Soc., 34(1) (2019), 59–80.
  • [105] G. Gras, Principalisation d’id´eaux par extensions absolument ab´eliennes, J. Number Theory, 62(2) (1997), 403–421.
  • [106] S. Bosca, Principalization of ideals in abelian extensions of number fields, Int. J. Number Theory, 5(03) (2009), 527–539.
  • [107] T. Nguyen Quang Do, Sur la conjecture faible de Greenberg dans le cas ab´elien p-d´ecompos´e, Int. J. Number Theory, 2 (2006), 49–64.
  • [108] T. Nguyen Quang Do, Sur une forme faible de la conjecture de Greenberg II, Int. J. Number Theory, 13 (2017), 1061–1070.
  • [109] R. Greenberg, Galois representations with open image, Ann. Math. Qu´ebec, special volume in honor of Glenn Stevens, 40(1) (2016), 83–119.
  • [110] F. Pitoun, Calculs th´eoriques et explicites en th´eorie d’Iwasawa, These de doctorat en Mathematiques, Laboratoire de Mathematiques, Universit´e de Franche-comt´e Besancon, 2010.
  • [111] F. Pitoun, F. Varescon, Computing the torsion of the p-ramified module of a number field, Math. Comp., 84(291) (2015), 371–383.
  • [112] J. H. Silverman, Wieferich’s criterion and the abc-conjecture, J. Number Theory, 30 (1988), 226–237.
  • [113] H. Graves, M. R. Murty, The abc conjecture and non-Wieferich primes in arithmetic progressions, J. Number Theory, 133(6) (2013), 1809–1813.
  • [114] C. Maire, M. Rougnant, A note on p-rational fields and the abc-conjecture (2019), Proceedings of the A.M.S., (to appear), arxiv:1903.11271 [math.NT].
  • [115] D. Byeon, Indivisibility of special values of Dedekind zeta functions of real quadratic fields, Acta Arithmetica, 109(3) (2003), 231–235.
  • [116] J. Assim, Z. Bouazzaoui, Half-integral weight modular forms and real quadratic p-rational fields, (2018/2019), arxiv:1906.03344 [math.NT].
  • [117] J. Shu, Root numbers and Selmer groups for the Jacobian varieties of Fermat curves, (2018), arxiv:1809.09285 [math.NT]. [118] R. Davis, R. Pries, Cohomology groups of Fermat curves via ray class fields of cyclotomic fields, (2018), (in press).
  • [119] A. Charifi, Groupes de torsion attaches aux extensions Ab´eliennes p-ramifi´ees maximales (cas des corps totalement r´eels et des corps quadratiques imaginaires), Th`ese de 3e cycle, Mathematiques, Universit´e de Franche-Comt´e, 1982, 50 pp.
  • [120] K. Hatada, Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at 2? p, Comment. Math. Univ. St. Pauli, 36 (1987), 41–51.
  • [121] K. Hatada, Chi-square tests for mod 1 distribution of Fermat and Fibonacci quotients, Sci. Rep. Fac. Educ., Gifu Univ., Nat. Sci., 12 (1988), 1–2.
  • [122] T. Hofmann, Y. Zhang, Valuations of p-adic regulators of cyclic cubic fields, J. Number Theory, 169 (2016), 86–102.
  • [123] J.S. Kraft, R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math., 97 (1995), 135–155.
  • [124] R. Barbulescu, J. Ray, Some remarks and experimentations on Greenberg’s p-rationality conjecture, (2017), arxiv:1706.04847 [math.NT].
  • [125] Z. Bouazzaoui, Fibonacci sequences and real quadratic p-rational fields, (2019), arxiv:1902.04795 [math.NT].
  • [126] M. Ozaki, H. Taya, A note on Greenberg’s conjecture for real abelian number fields, Manuscripta Math., 88(1) (1995), 311–320.
  • [127] C. Maire, M. Rougnant, Composantes isotypiques de pro-p-extensions de corps de nombres et p-rationalit´e, Publ. Math. Debrecen, 94(1/2) (2019), 123–155.
  • [128] G. Gras, Invariant generalized ideal classes–Structure theorems for p-class groups in p-extensions, Proc. Indian Acad. Sci. (Math. Sci.), 127(1) ( 2017), 1–34.