GBS Operators of Bivariate Durrmeyer Operators on Simplex
GBS Operators of Bivariate Durrmeyer Operators on Simplex
We define GBS operators of Durrmeyer operators for bivariate functions on simplex and we give their approximations and rate of their approximations for B-continuous and B-differentiable functions. We show that the GBS type the operators of new Durrmeyer have better approximation than the new operators.
___
- [1] J. L. Durrmeyer, "une formule d′ inversion de la transformee de Laplace:Applicationsa la theorie de moments", these de′
3e cycle, Faculte des sciences de 1 universite de Paris,1967.
- [2] M. M. Derriennic,Sur l′ approximation de fonctions integrables sur [0, 1] par de polynomes de Bernstein modifies, J.
Approx. Theory, 31(1981),325-343.
- [3] S.P. Singh,On approximation Of Integrable Functions By Modified Bernstein Polynomials, Publications De L’Institut
Mathematicque, 41(55), (1987), 91-95.
- [4] K. Bögel,Mehrdimensionale Differentitation von Funktionen mehrerer Veranderhicher, J. Reine agnew. Math., 170, (1934)
197-217.
- [5] K. Bögel,Uber die mehrdimensionale Differentitation, Integration and beschra ̈nkte variation , J. Reine agnew. Math.,
(1935) 173, 5-29.
- [6] K. Bögel,Uber die mehrdimensionale Differentitation, Jber. DMV, 65, (1962) 45-71.
- [7] E. Dobrescu, I. Matei,Approximarea prin polinoame de tip Bernstein a functiilor bidimensional continue, Anal. Univ.
Timisoara , Seria Stiinte matematici-fizice, IV (1966), 85-90.
- [8] C. Badea, I.Badea, H. H. Gonska,A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math.
Soc.,34, (1986) 53-64.
- [9] I. Badea, Modul de continuitate in sens Bo ̈gel s ̧i unele applicatii in approximarea printr-un operator Bernstein, Studia
Univ. ”Babes ̧-Bolyai” Ser. Math-Mech., 18(2), (1973)69-78, (Romanian).
- [10] H. H. Gonska,Quantitative approximation in C(X), Habilitationsschrift, Universitaa ̈t Disburg, (1985).
- [11] C. Badea, C. Cottin, Korovkin-type theorems for Generalized Boolean Sum operators, Colloquia Mathematica Sociekatis Janos Bolyai, 58, Approximation Theory , Kecskemet(Hungary), (1990) 51-68.
- [12] V. Volkov, I.On the convergence of sequences of linear positive operators in the space of continuous functions of two variable, Math. Sb. N. S. 43(85) (1957) 504 (Russian).
- [13] O. T. Pop,Approximation of B-differentiable functions by GBS operators, Analele Univ. Oradea. Fac. Mathematica, Tom. XIV, (2007) 15-31.