In this study, it has been researched the exponential curve as a $3^{rd},$ $5^{th}$ and $7^{th}$ order B\'{e}zier curve in $\mathbf{E}^{2}$. Also, the numerical matrix representations of these curves have been calculated using the Maclaurin series in the plane via the control points.

- [1] D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer Science and Business Media, 2006.
- [2] E. Cohen, R. F. Riesenfeld, General matrix representations for B´ezier and B-spline curves, Computers in Industry, 3(1-2) (1982), 9-15.
- [3] T.A. Aydin, A matrix presentation of higher order derivatives of Bezier curves and surfaces, Journal of Science and Art, 21(1) (2021), 77-90.
- [4] Ş. Kılışoğlu, S. Şenyurt, On the Matrix Representation of 5th order B´ezier Curve and derivatives, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 71(1) (2022), 133-152.
- [5] Ş. Kılıçoğlu, On Approximation of Helix by 3rd; 5th and 7th order B´ezier curves in E3, Thermal Science, 26(2) (2023), 525-538.
- [6] Ş. Kılıçoğlu, On approximation sine wave with the 5th and 7th order B´ezier paths in E2, Thermal Science, 26(2) (2023), 539-550.
- [7] Ş. Kılıçoğlu, S. Yurttançıkmaz, How to approximate cosine curve with 4th and 6th order B´ezier curve in plane?, Thermal Science, 26(2) (2023), 559-570.
- [8] F. Tas, K. Ilarslan, A new approach to design the ruled surface, Int. J. Geom. Methods Mod. Phys., 16(6) (2019), Article ID 1950093, doi: 10.1142/S0219887819500932.
- [9] H. Hagen, Bezier-curves with curvature and torsion continuity, Rocky Mountain J. Math., 16(3) (1986), 629-638.
- [10] A. Y. Ceylan, Curve Couples of B´ezier Curves in Euclidean 2-Space, FUJMA, 4(4) (2021), 245-250.
- [11] H. Zhang, F. Jieqing, Bezier Curves and Surfaces, State Key Lab of CAD&CG Zhejiang University, 2006.
- [12] S.Michael, B´ezier curves and surfaces, Lecture 8, Floater Oslo Oct., 2003.
- [13] G. Farin, Curves and Surfaces for Computer-Aided Geometric Design, Academic Press, 1996.
- [14] S¸ . Kılıc¸o˘glu, S. S¸enyurt, On the cubic bezier curves in E3, Ordu University Journal of Science and Technology, 9(2) (2019), 83-97.
- [15] A. Levent, B. Sahin, Cubic Bezier-like transition curves with new basis function, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44(2) (2008), 222-228.
- [16] Ş. Kılıçoğlu, S. Şenyurt, On the Involute of the Cubic Bezier Curve by Using Matrix Representation in E3, European Journal of Pure and Applied Mathematics, 13(2020), 216-226.
- [17] Ş. Kılıçoğlu, S. Şenyurt, On the Bertrand mate of a cubic Bezier curve by using matrix representation in E3, 18th International Geometry Sym., 2021.
- [18] Ş. Kılıçoğlu, S. Şenyurt, On the Mannheim partner of a cubic Bezier curve in E3, International Journal of Maps in Mathematics, 5(2) (2022), 182-197.
- [19] Ş. Kılıçoğlu, S. Şenyurt, How to Find B´ezier Curves in E3, Commun. Adv. Math. Sci, 5(1) (2022), 12-24.
- [20] ”Derivatives of a B´ezier Curve” https://pages.mtu.edu/˜shene/COURSES/ cs3621/NOTES/spline /Bezier/ bezier-der. html.
- [21] Ş. Kılıçoğlu, S. Şenyurt, On the matrix representation of Bezier curves and derivatives in E3, Sigma J. Engineering and Natural Sci., (in press).

Bibtex | @araştırma makalesi { cams1228730, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2023}, volume = {6}, number = {2}, pages = {67 - 77}, doi = {10.33434/cams.1228730}, title = {A Modelling on the Exponential Curves as \$Cubic\$, \$5\^\{th\}\$ and \$7\^\{th\}\$ B\\'\{e\}zier Curve in Plane}, key = {cite}, author = {Kılıçoglu, Şeyda and Yurttançıkmaz, Semra} } |

APA | Kılıçoglu, Ş. & Yurttançıkmaz, S. (2023). A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane . Communications in Advanced Mathematical Sciences , 6 (2) , 67-77 . DOI: 10.33434/cams.1228730 |

MLA | Kılıçoglu, Ş. , Yurttançıkmaz, S. "A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane" . Communications in Advanced Mathematical Sciences 6 (2023 ): 67-77 < |

Chicago | Kılıçoglu, Ş. , Yurttançıkmaz, S. "A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane". Communications in Advanced Mathematical Sciences 6 (2023 ): 67-77 |

RIS | TY - JOUR T1 - A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane AU - ŞeydaKılıçoglu, SemraYurttançıkmaz Y1 - 2023 PY - 2023 N1 - doi: 10.33434/cams.1228730 DO - 10.33434/cams.1228730 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 67 EP - 77 VL - 6 IS - 2 SN - 2651-4001- M3 - doi: 10.33434/cams.1228730 UR - Y2 - 2023 ER - |

EndNote | %0 Communications in Advanced Mathematical Sciences A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane %A Şeyda Kılıçoglu , Semra Yurttançıkmaz %T A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane %D 2023 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 6 %N 2 %R doi: 10.33434/cams.1228730 %U 10.33434/cams.1228730 |

ISNAD | Kılıçoglu, Şeyda , Yurttançıkmaz, Semra . "A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane". Communications in Advanced Mathematical Sciences 6 / 2 (Haziran 2023): 67-77 . |

AMA | Kılıçoglu Ş. , Yurttançıkmaz S. A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane. Communications in Advanced Mathematical Sciences. 2023; 6(2): 67-77. |

Vancouver | Kılıçoglu Ş. , Yurttançıkmaz S. A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane. Communications in Advanced Mathematical Sciences. 2023; 6(2): 67-77. |

IEEE | Ş. Kılıçoglu ve S. Yurttançıkmaz , "A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane", , c. 6, sayı. 2, ss. 67-77, Haz. 2023, doi:10.33434/cams.1228730 |

Sayıdaki Diğer Makaleler

Nonlinear Approximation by $q$-Favard-Sz{\'a}sz-Mirakjan Operators of Max-Product Kind

On Quasi Hemi-Slant Submersions

Pramod Kumar RAWAT, Sushil KUMAR

A Modelling on the Exponential Curves as $Cubic$, $5^{th}$ and $7^{th}$ B\'{e}zier Curve in Plane

Şeyda KILIÇOGLU, Semra YURTTANÇIKMAZ