RAPID AND ACCURATE DETERMINATION OF CLOPIDOGREL IN TABLETS BY USING SPECTROPHOTOMETRIC AND CHROMATOGRAPHIC TECHNIQUES

Klopidogrel CLP ’in sıfır derece ve türev ultraviole UV spektroskopisi yöntemi kullanarak kantitatif tayini yapılmıştır. 0.1N HCl içerisinde CLP için 0.1-0.8 mM konsantrasyon aralığında, kalibrasyon eğrileri sırasıyla 267.5, 271.5 ve 279.3 nm de birinci türev, 269.5, 273.4, 277.3 nm de ikinci türev ve 268.1, 271.3, 275.6 nm dalga boylarında üçüncü türev UV spektrofotometrisi için yapılan ölçümlerden elde edilmiştir. Uygulamada, validasyon çalışmalarında en düşük bağıl standart sapma değerlerinin elde edildiği sıfırıncı derece UV spektrofotometrisinde 270 nm, birinci türev UV spektrofotometrisinde 279.3 nm, ikinci türev UV spektrofotometrisinde 269.5 nm ve üçüncü türev UV spektrofotometrisinde 275.6 nm dalga boyları seçilmiştir. Metodların ortalama geri kazanım ve bağıl standart sapma değerleri sırasıyla sıfır derece UV spektrofotometrisinde % 98.7 ve % 1.90, birinci türev UV spektrofotometrisinde % 97.5 ve % 0.76, ikinci türev UV spektrofotometrisinde % 99.6 ve % 1.25, üçüncü türev UV spektrofotometrisinde % 99.5 ve % 1.15 olarak bulunmuştur. Bu çalışmada, tayin alt sınırı ve teşhis alt sınırı değerleri seçilmiş dalga boylarında sırasıyla; sıfır derece λ270 nm için 0.01mM ve 0.03 mM, birinci türev λ279.3 nm , ikinci türev λ269.5 nm , üçüncü türev λ275.6 nm UV spektrofotometrisi için 0.02 mM ve 0.07 mM olarak hesaplanmıştır. Önerilen metodlar klopidogrel’in etkin madde ve tabletlerindeki miktar tayinine uygulanmıştır. Sonuçlar istatistiksel olarak kendi aralarında ve yüksek performans sıvı kromatografisi YPSK yöntemiyle karşılaştırılmıştır. Sonuçlar arasındaki farklılıklar önemsizdir. YPSK yönteminde, Nova-Pak C18 kolonu, mobil faz olarak, 0.8 mL/dak akış hızında pH 8 fosfat tamponu : asetonitril 30:70, h/h dan oluşan izokratik sistem ve 210 nm de deteksiyon optimal kromatografik koşullar olarak belirlenmiştir. Uygulanan YPSK yönteminde klopidogrel için lineerlik 1.26-7.55 µg/mL konsantrasyon aralığında 0.999 korelasyon katsayısıyla elde edilmiştir. Tayin ve teşhis alt sınırı değerleri sırasıyla 0.29 µg/mL ve 0.96 µg/mL olarak hesaplanmıştır. YPSK yönteminde, ortalama geri kazanım ve bağıl standart sapma değerleri sırasıyla % 99.9 ve % 0.4 olarak bulunmuştur. Bu çalışma, spektrofotometrik metodların klopidogrel’in tabletlerdeki miktar tayininde doğru, basit, ekonomik ve pratik olarak kullanılabileceğini göstermiştir. Bu metodlar tekraredilebilir sonuçlar vermektedir. Önerilen metodlar klopidogrel içeren tabletlerin rutin kalite kontrolüne uygulanabilir. Farmasötik formülasyonlardaki genel katkı maddelerinden hiçbir şekilde etkilenme görülmemektedir.

RAPID AND ACCURATE DETERMINATION OF CLOPIDOGREL IN TABLETS BY USING SPECTROPHOTOMETRIC AND CHROMATOGRAPHIC TECHNIQUES

Quantitative determination of clopidogrel CLP was carried out by using zero-order and derivative ultraviolet UV spectroscopy. Calibration curves for CLP in 0.1N HCl between 0.10.8 mM 42-336 µg/mL concentration range were obtained by the measurements at 267.5, 271.5 and 279.3 nm for first derivative, at 269.5, 273.4, 277.3 nm for second derivative and at 268.1, 271.3, 275.6 nm for third derivative UV spectrophotometry, respectively. In application, 270 nm in zero-order UV spectrophotometry, 279.3 nm in first derivative UV spectrophotometry, 269.5 nm in second derivative UV spectrophotometry and 275.6 nm in third derivative UV spectrophotometry were selected by their lowest relative standard deviation values in the validation studies. Mean recoveries and the relative standard deviations of the methods were found as 98.7 % and 1.90 % in zero-order UV spectrophotometry, 97.5 % and 0.76 % in first derivative UV spectrophotometry, 99.6 % and 1.25 % in second derivative UV spectrophotometry, 99.5 % and 1.15 % in third derivative UV spectrophotometry, respectively. In this study, the values of limit of detection and limit of quantitation were calculated at selected λ values as 0.01mM and 0.03 mM for zero-order λ270 nm , 0.02 mM and 0.07 mM for first derivative λ279.3 nm , second derivative λ269.5 nm , third derivative λ275.6 nm UV spectrophotometry, respectively. The proposed methods were applied to the determination of CLP in bulk and tablets. The results were compared statistically with each other and high performance liquid chromatography HPLC procedure. The differences were not significant. In HPLC method, an isocratic system consisted of a Nova-Pak® C18 analytical column and a mobile phase composed of pH 8 phosphate buffer : acetonitrile 30:70, v/v at a flow rate 0.8 mL/min was used for the optimal chromatographic separation using UV detection at 210 nm. Applying HPLC method, linearity was observed in the concentration range from 1.26 to 7.55 µg/mL for CLP with a correlation coefficient 0.999. The values of the limit of detection and limit of quantitation were calculated as 0.29 µg/mL and 0.96 µg/mL, respectively. Synthetic samples were analyzed and mean recoveries and the relative standard deviations were found as 99.95 % and 0.40 % in HPLC. The spectrophotometric methods presented in this study can be used accurate, simple, economic and practical in the determination of CLP in tablets. The procedures do not require any separation step. The mean recoveries were found satisfactory in the methods. These methods also give repeatable results. Proposed methods could usefully be applied to routine quality control of tablets containing CLP. No interference was observed from common excipients in pharmaceutical formulations

___

  • [1] Budavari, S., Eds., In: The Merck Index, 13th ed., Merck & Co., Inc., Whitehouse Station, NJ, (2001), p.856. [2] Herbert, J. M., Frehel, D., Vallee, E., Kieffer, G., Gouy, D., Berger, Y., Necciari, J., Defreyn, G., and Maffrand, J.P., Cardiovascular Drug Reviews, 11 (2): (1993), 180 - 198.
  • [3] Physicians Desk Reference (PDR®) (2007), 61st ed., pp. 2926-2929.
  • [4] Sweetman, S.C., Martindale: The Complete Drug Reference (2007), The Pharmaceutical Press (London), (35): 1424-1425.
  • [5] Mishra, P., Dolly, A., Indian Journal of Pharmaceutical Sciences, 67(4): (2005), 491- 493.
  • [6] Mishra, P., Dolly, A., Indian Journal of Pharmaceutical Sciences, 68(3): (2006), 365 - 368.
  • [7] The United States Pharmacopoeia, Thirtieth Revision, and The National Formulary, 25th ed., Rockville, USA, pp.1802 - 1805.
  • [8] Zaazaa, H.E., Abbas, S.S., Abdelkawy, M., Abdelrahman, M.M., Talanta, 78: (2009), 874 - 884.
  • [9] Mitakos A., Panderi, I., J. Pharm. Biomed. Anal., 28(3-4): (2002), 431 - 438.
  • [10] Singhs, S.S., Sharma,K., Barot, D., Mohan, P.R., Lohray V.B., J. Chromatogr. B. Analyt Technol Biomed. Life Sci., 821(2): (2005), 173 - 180.
  • [11] Souri, E., Jalalizadeh, H., Kebriaee-Zadeh, A., Shekarchi, M., Dalvandi, A., Biomed. Chromatogr., 20(12): (2006), 1309-1314.
  • [12] Gandhimati, M., Ravi, TK., Indian Journal of Pharmaceutical Sciences , 69(1): (2007), 123 - 125.
  • [13] Nirogi , R.V.S., Kandikere , V.N., Shukla, M., Mudigonda, K., Maurya S., Boosi, R., Rapid Commun Mass Spectrom., 20: (2006), 1695 - 1700.
  • [14] Agrawal, H., Kaul, N., Paradkar, A.R., Mahadik, K.R., Talanta, 61(5): (2003), 581 - 589.
  • [15] Mitakos, A., Panderi, I., Anal. Chim. Acta, 505: (2004), 107- 114.
  • [16] Ksycinska, H., Rudzki, P., Bukowska-Kiliszek, M., J. Pharm. Biomed. Anal., 41(2): (2006), 533 - 539.
  • [17] Lagorce, P., Perez, Y., Ortiz, J., Necciari, J., Bressole, F., J.Chromatogr B. Biomed Sci Appl., 720(1-2): (1998), 107-117.
  • [18] Takahashi, M., Pang, H., Kawabata, K., Farid, A.N., Kurihara, A., J. Pharm. Biomed. Anal., 48(4): (2008), 1219-1224.
  • [19] Dermiş, S., Aydoğan, E., (2009), Die-Pharmazie, (In Press). Reference No. P 9123/ DOI:10.1691/ph.2009.9123
  • [20] Fayed, A.S., Weshahy, S.A., Shehata, M.A., Hassan, N.Y., Pauwels, J., Hoogmartens, J., Van Schepdael A., J Pharm Biomed Anal., 49: (2009), 193-200.
  • [21] Robinson, A., Hillis, J., Neal, C., Leary, A.C., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 842(2): (2007), 344-354.
  • [22] Ojeda, C.B., Rojas, F.S. and Pavon, J.M.C., Talanta, 42: (1995), 1195 - 1214.
  • [23] Miller, J.C., Miller, J.N., Statistics for Analytical Chemistry, Second ed., Ellis Harwood Limited, London, (1992).
  • [24] ICH Draft Guidelines on Validation of Analytical Procedures: Definitions and Terminology, Federal Register, Volume 60, IFPMA, Switzerland, (1995), 11260 - 11268.
  • [25] The United States Pharmacopoeia, 25th. Revision, The National Formulary, United States Pharmacopoeial Convention, Inc., Rockville, MD (2002), 2256 - 2259.