Microcontroller based low-cost device for quartz crystal microbalance

Basit ve düşük maliyetli kimyasal/biyolojik algılayıcıların geliştirilmesi disiplinler arası bilimler için önemli bir araştırma alanı oluşturmaktadır. Piezoelektrik temelli Kuartz Kristal Mikrobalans QCM sistemleri yeni geliştirilen algılayıcı malzemelerinin testinde kolaylıkla kullanılabilmektedir. Bu çalışmada, yapımı kolay, elde taşınabilen bir bilgisayarlı QCM aygıtının tertibi önerilmiştir. Genellikle birinci sınıf öğrenci laboratuvarlarında karşılaşılan algılayıcı uygulamalarının büyük bölümü bu sistemle gerçekleştirilebilir ve önerilen elektronik devre öğrencilerin kendileri tarafından monte edilebilir.

Microcontroller based low-cost device for quartz crystal microbalance

Development of simple and low cost chemical/biological sensors forms an important research area for interdisciplinary sciences. Piezoelectricity based Quartz Crystal Microbalance QCM systems may be readily utilized in testing newly developed sensor materials. In this work, construction of a simple, hand held, computerized QCM apparatus is proposed. Most of the sensor applications usually encountered in freshman laboratories can be performed with this system and the proposed electronic circuit can be assembled by the students themselves.

___

  • [1] Buck, R.P., Lindner, E., Kutner, W., Inzelt, G., 2004. Piezoelectric chemical sensors, Pure Appl. Chem., 76(6):1139-1160.
  • [2] Mecea, V.M., 2006. Is quartz crystal microbalance really a mass sensor?, Sensors and Actuators A, 128:270-277.
  • [3] Sauerbrey, G.Z., 1959. The use of quartz oscillators for weighing thin layers and for microweighing, Phys., 155:206-222.
  • [4] Sakti, S. P., Rösler, S., Lucklum, R., Hauptmann, P., Bühling, F., Ansorge, S., 1999. Thick polystyrene-coated quartz crystal microbalance as a basis of a cost effective immunosensor, Sensors and Actuators, 76:98-102.
  • [5] Su, X., Ng, H.T., Dai, C., O’Shea, S.J., Li, S.F.Y., 2000. Disposable, low cost, silver-coated, piezoelectric quartz crystal biosensor and electrode protection, Analyst, 125:2268-2273.
  • [6] Bunde, R.L., Jarvi, E.J., Rosentreter, J.J., 1998. Piezoelectric quartz crystal biosensors, Talanta, 46:1223-1236.
  • [7] Janshoff, A., Steinem, C., 2001. Quartz Crystal Microbalance for Bioanalytical Applications, Sensors Update, 9:313-354.
  • [8] Taylor, R., Walton, D.R.M., 1993. The chemistry of fullerenes, Nature, 323:685- 693.
  • [9] Pan, N.Y., Shih, J.S., 2004. Piezoelectric crystal immunosensors based on immobilized fullerene C60-antibodies, Sensors and Actuators B, 98:180-187.
  • [10] Shih, J.S., Chao, Y.C., Sung, M.F., Gau, G.J., Chiou, C.S., 2001. Piezoelectric crystal membrane chemical sensors based on fullerene C60, Sensors and Actuators B, 76:347-353.
  • [11] Halicky, P., 2011. http://www.qsl.net/om3cph/ (accessed September 2011).
  • [12] Application Note, 1994. Frequency counter using PIC16C5X, Microchip Technology Inc., AN592.
  • [13] Cicek, B., 2001. Effect of residence time on fullerene yield, Fullerene Science and Technology, 9:63-69.
  • [14] Cicek, B., Kenar, A., Nazir, H., 2001. Simultaneous determination of C60 and C70 fullerenes by a spectrophotometric method, Fullerene Science and Technology, 9:103-111.
  • [15] Al-Mohamad, A., Allaf, A.W., 1999. Fullerene-C60 thin films for electronic applications, Synth. Metals, 104:39-44.
Communications Faculty of Sciences University of Ankara Series B Chemistry and Chemical Engineering-Cover
  • ISSN: 1303-6017
  • Başlangıç: 1948
  • Yayıncı: Ankara Üniversitesi