MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS

Öz The magnetocaloric effect in Ni50-xCuxMn38Sn12B3 ribbons depending on the Cu substitution (x= 0, 1, 3) was investigated around the Curie temperature. The purpose of the present study was to analyze the magnetocaloric effect around a second order phase transition (around the Curie temperature) which has a smaller thermal hysteresis compared to a first order phase transition (Martensitic transition). The Curie temperature of the ribbons shifted to higher temperatures with increasing Cu content. A conventional magnetocaloric effect (MCE) was observed around the Curie temperature when the ribbons are subjected to a magnetic field change of 5 T. The magnetic entropy changes were calculated based on the isothermal magnetization  data using thermodynamic Maxwell equation. The highest magnetic entropy change and the refrigerant capacity was obtained for the x=1 ribbon. 

___

Aydogdu, Y. , Turabi, A.S., Aydogdu, A., Kok, M., Yakinci, Z. D., Karaca, H. E.: The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys, J. Therm. Anal. Calorim. 126, 399–406 (2016)

Zhang, B., Zhang, X., Yu, S. , Chen, J., Cao, Z. , Wu, G.: Giant magneto thermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys, Appl. Phys. Lett. 91, 012510 (2007)

Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sánchez-Llamazares, J.L., Flores-Zúñiga, H., and Frontera, C.: Elastocaloric and magnetocaloric effects in Ni-Mn-Sn (Cu) shape-memory alloy, J. Appl. Phys. 113, 053506 (2013)

Pramanick, S., Chatterjee, S., Giri, S., Majumdar, S., Koledov, V. V., Mashirov, A., Aliev, A. M., Batdalov, A. B., Hernando, B., Rosa, W. O., and Gonzlez-Legarreta, L.: Multiple magneto-functional properties of Ni46Mn41In13 shape memory Alloy, J. Alloys Compd. 578, 157161 (2013).

Samanta, T., Saleheen, A. U., Lepkowski, D. L., Shankar, A., Dubenko, I., Quetz, A., Khan, M., Ali, N. and Stadler, S.: Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys, Phys. Rev. B. 90, 064412 (2014).

Yu, S. Y., Liu, Z. H., Liu, G. D., Chen, J. L., Cao, Z. X., Wu, G. H., Zhang, B., and Zhang, X.: Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys, x= (14–16) upon martensitic transformation, Appl. Phys. Lett. 89, 162503 (2006).

Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K. and Oikawa, K.: Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys, Appl. Phys. Lett. 85, 4358 (2004).

Krenke, T., Acet, M., Wassermann, E. F., Moya, X., Manosa, L., and Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In Alloys, Phys. Rev. B. 73, 174413 (2006).

Manosa, L., Alonso, D. G., Planes, A., Bonnot, E., Barrio, M., Tamarit, J. L., Aksoy, S. and Acet, M.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy, Nat. Mat. 9, 478–481 (2010).

Kirat G, Kizilaslan O, Aksan M. A.: Magnetoresistance properties of magnetic Ni-Mn-Sn-B shape memory ribbons and magnetic field sensor aspects operating at room temperature. J. Magn. Magn. Mater. 477, 366-371 (2019).

Chattopadhyay, M. K., Manekar, M. A., Sharma, V. K., Arora, P., Tiwari, P., Tiwari, M. K. and Roy, S. B.: Contrasting magnetic behavior of Ni50Mn35In15 and Ni50Mn34.5In15.5 Alloys, J. Appl. Phys. 108, 073909 (2010).

Chen, F., Liu, W.L., Shi, Y.G., Müllner, P.: Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon, J. Magn. Magn. Mater. 377, 137–14 (2015)

Huang, L., Cong, D. Y., Suo, H. L. and Wang, Y. D.: Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. Appl. Phys. Lett. 104, 132407 (2014).

Gschneidner K. A., and Pecharsky, V. K.: Magnetocaloric Materials, Annual Rev. Mater. Sci. 30, 387–429 (2000).

Khattak, K. S., Aslani, A., Nwokoye, C. A., Siddique, A., Bennett, L. H., and Torre, E. D.: Magnetocaloric properties of metallic nanostructures, Cogent Engineering 2, 1050324 (2015).

Liu, J., Scheerbaum, N., Lyubina, J. and Gutfleisch, O.: Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co., Appl. Phys. Lett. 93, 102512 (2008).

Zhang, Y. et al.: Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys., Scripta Mater. 75, 26–29 (2014).

Tan, C., Tai, Z., Zhang, K., Tian, X. and Cai, W.: Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping., Sci. Rep. 7, 43387 (2017).

Tan, C. L., Feng Z. C., Zhang, K., Wu, M. Y., Tian, Guo E. J.: Microstructure, martensitic transformation and mechanical properties of Ni-Mn-Sn alloys by substituting Fe for Ni, Trans. Nonferrous Met. Soc. China. 27, 2234–2238 (2017).

Zhang, H. H., Zhang, X., Qian, M., Wei, L., Xing, D., Sun, J., Geng, L.: Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior. J. Alloy. Compd. 715, 206–213 (2017).

Qu, Y.H., Cong, D.Y., Sun X.M., Nie Z.H., Gui, W.Y., Li R.G., Ren Y., Wang, Y.D..: Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys. Acta Mater. 134, 236–248 (2017).

Cong, D. Y., Huang, L., Hardy, V., Bourgault, D., Sun, X. M., Nie, Z.H., Wang, M.G., Ren, Y., Entel, P., Wang, Y. D.: Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy. Acta Mater. 146, 142–151 (2018).

Liu, C., Li, Z., Zhang, Y., Liu, Y., Sun., J., Huang., Y., Kang, B., Xu, K., Deng, D., Jing, D.: Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48−xCuxNi42Sn10 Heusler alloys. Phys. Rev. B Condens. Matter. 508, 118–123 (2017).

Zhang, X., Zhang, H., Qian, M. and Geng, L.: Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations Sci. Rep. 8, 8235 (2018)

Hernando, B., Sanchez Llamazares, J.L., Santos, J.D., Sanchez, M.L., Escoda, Ll., Sunol, J.J., Varga, R., Garcia, C., Gonzalez, J.: Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: Martensitic transformation and magnetic properties, J. Magn. Magn. Mater. 321, 763–768 (2009)

Luo, H., Meng, F., Jiang, Q., Liu, H., Liu, E., Wu G. and Wang, Y.: Effect of boron on the martensitic transformation and magnetic properties of Ni50Mn36.5Sb13.5-xBx alloys, Scripta Mater. 63 569–572 (2010)

Kübler, J., William, A. R., and Sommers, C. B.: Formation and coupling of magnetic moments in Heusler alloys, Phys. Rev. B. 28, 1745 (1983)

Pecharsky, V. K. Gschncidner K. A. Jr.: Giant Magnetocaloric Effect in Gd5(Si2Ge2), Phys. Rev. Lett. 78, 4494 (1997).

Khan, M., Ali, N., Stadler, S.: Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys J. Appl. Phys. 101 (2007) 053919.

Varzaneh, A. G., Kameli, P., Amiri, T., Ramachandran, K.K., Mar, A., Sarsari, I. A., Luo, J. L., Etsell, T. H., Salamati, H.: Effect of Cu substitution on magnetocaloric and critical behavior in Ni47Mn40Sn13-xCux alloys, J. Alloy. Compd. 34-42, 708 (2017)

Tian, F. Zeng, Y, Xu, M., Yang, S., Lu, T, Wang, J., Chang, T, Adil, M., Zhang, Y, Zhou, C. and Song, X.: A magnetocaloric effect arising from a ferromagnetic transition in the martensitic state in Heusler alloy of Ni50Mn36Sb8Ga6, Appl. Phys. Lett. 107, 012406 (2015).

Zhang, Y., Zheng, Q., Xia, W., Zhang, J., Dua, J., and Yana, A.: Enhanced large magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11 alloys by a rapid solidification method, Scripta Mater. 104, 41–44 (2015).