Ionization and phonon production by $^{10}$B ions in radiotherapy applications

Ionization and phonon production by $^{10}$B ions in radiotherapy applications

The therapeutic use of heavy ions has received much attention due to their physical and radiobiological properties. Thanks to these features of heavy ion radiotherapy, radiation in tissues close to critical tissues can reduce LET while allowing an increase in LET in tumors. Selection of biomaterials closest to the tissue is critical to measure the accuracy of this LET transfer. The accuracy of LET and radiological features measured in phantoms created from biomaterials selected according to the characteristics of the target tissue is very important for human life. For this reason, the research of polymeric materials, which is the closest biomaterial to soft tissue and therefore phantom material, has increased recently. In this study, ionization to the polymeric biomaterials closest to the soft tissue in boron therapy application, and phonon release from all interactions were investigated and analyzed. This analysis was performed using MC-based TRIM simulation. In the analysis, the Bragg peak range closest to the soft tissue was 7.2% and PMMA was the phonon release from all interactions. It has been observed that the phonon production in phantoms results from ions on average 30% and recoils interactions 70%. The main novelty that this study will provide to the literature is to consider the phonon interactions as well as the ionization interactions. Thus, apart from proton and carbon, the most ideal polymeric biomaterial to be used instead of soft tissue was evaluated by calculating all interactions. Thus, it is aimed to determine the most ideal phantom material.

___

  • Ekinci, F., Bostanci, E., Güzel, M.S., Dagli, O., Effect of different embolization materials on proton beam stereotactic radiosurgery Arteriovenous Malformation dose distributions using the Monte Carlo simulation code, J. Radiat. Res. Appl. Sci., 15 (3) (2022), 191-197, https://doi.org/10.1016/j.jrras.2022.05.011.
  • Senirkentli, G.B., Ekinci, F., Bostanci, E., Güzel, M.S., Dagli, Ö., Karim, A.M., Mishra, A., Therapy for mandibula plate phantom, Healthcare, 9 (2021) 167, https://doi.org/10.3390/ healthcare9020167.
  • Durante, M., Loeffler, J.S., Charged particles in radiation oncology, Nat. Rev. Clin. Oncol., 7 (2010), 37-43, https://doi.org/10.1038/nrclinonc.2009.183.
  • PTCOG, Particle therapy co-operative group, (2020). Available at: https://www.ptcog.ch. [Accessed 20 October 2020].
  • Tessonnier, T., Böhlen, T.T., Ceruti, F., Ferrari, A., Sala, P., Brons, S., Haberer, T., Debus, J., Parodi, K., Mairani, A., Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center, Phys. Med. Biol., 62 (2017), 6579-6594, https://doi.org/10.1088/1361-6560/aa7be4.
  • Tessonnier, T., Mairani, A., Brons, S., Haberer, T., Debus, J., Parodi, K., Experimental dosimetric comparison of 1H, 4He, 12C and 16O scanned ion beams, Phys. Med. Biol., 62 (2017), 3958–3982, https://doi.org/10.1088/1361-6560/aa6516.
  • Kozlowska, W.S., Böhlen, T.T., Cuccagna, C., Ferrari, A., Fracchiolla, F., Georg, D., Magro, G., Mairani, A., Schwarz, M., Vlachoudis, V., FLUKA particle therapy tool for Monte Carlo independent calculation of scanned proton and carbon ion beam therapy, Phys. Med. Biol., 64 (2019), 075012, https://doi.org/10.1088/1361-6560/ab02cb.
  • Lundkvist, J., Ekman, M., Ericsson, S., Jonsson, B., Glimelius, B., Proton therapy of cancer: Potential clinical advantages and cost-effectiveness, Acta. Oncol., 44 (2005), 850-861, https://doi.org/10.1080/02841860500341157.
  • Kempe, J., Gudowska, I., Brahme, A., Depth absorbed dose and LET distributions of therapeutic H1, He4, Li7 and C12 beams, Med. Phys., 34 (2007), 183-192, https://doi.org/10.1118/1.2400621.
  • Kantemiris, I., Karaiskos, P., Papagiannis, P., Angelopoulos, A., Dose and dose averaged LET comparison of H1, He4, Li6, Be8, B10, C12, N14 and O16 ion beams forming a spread-out Bragg peak, Med. Phys., 38 (2011), 6585-6591, https://doi.org/10.1118/1.3662911.
  • Lourenço, A., Wellock, N., Thomas, R., Homer, M., Bouchard, H., Kanai, T., MacDougall, N., Royle, G., Palmans, H., Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams, Phys. Med. Biol., 61 (21) (2016), 7623-7638, https://doi.org/10.1088/0031-9155/61/21/7623.
  • Arib, M., Medjadj, T., Boudouma, Y., Study of the influence of phantom material and size on the calibration of ionization chambers in terms of absorbed dose to water, J. Appl. Clin. Med. Phys., 7 (2006), 55-64, https://doi.org/10.1120/jacmp.v7i3.2264.
  • Samson, D.O., Jafri, M.Z.M., Shukri, A., Hashim, R., Sulaiman, O., Aziz, M.Z.A., Yusof, M. F.M., Measurement of radiation attenuation parameters of modified defatted soy flour–soy protein isolate-based mangrove wood particleboards to be used for CT phantom production, Radiat. Environ. Biophys., 59 (2020), 483–501, https://doi.org/ 10.1007/s00411-020-00844-z.
  • Ekinci, F., Bölükdemir, M.H., The effect of the second peak formed in biomaterials used in a slab head phantom on the proton Bragg peak, J. Polytech., 23 (1) (2019), 129-136, https://doi.org/10.2339/politeknik.523001.
  • Ekinci, F., Bostanci, E., Dagli, O., Guzel, M.S., Analysis of Bragg curve parameters and lateral straggle for proton and carbon beam, Commun. Fac. Sci. Univ. Ank. Series A2- A3, 63 (1) (2021), 32-41, https://doi.org/10.33769/aupse.864475.
  • Stoller, R., Toloczko, M., Was, G., Certain, A., Dwaraknath, S., Garner, F., On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. B, 310 (2013), 75-80, https://doi.org/10.1016/j.nimb.2013.05.008.
  • Kinchin, G.H., Pease, R.S., The displacement of atoms in solids by radiation, Rep. Prog. Phys., 18 (1955), 1-51, https://doi.org/10.1088/0034-4885/18/1/301.
  • Ziegler, J.F., Biersack, J.P., Ziegler, M.D., SRIM-The Stopping and Range of Ions in Matter, SRIM Co., Boston, 2008.
  • Loeffler, J.S., Durante M., Charged particle therapy optimization. challenges and future directions, Nat. Rev. Clin. Oncol., 10 (2013), 411-424, https://doi.org/10.1038/nrclinonc.2013.79.
  • Uhl, M., Mattke, M., Welzel, T., Roeder, F., Oelmann, J., Habl, G., Jensen, A., Ellerbrock, M., Jakel, O., Haberer, T., Herfarth, K., Debus, J., Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: first long-term results, Cancer, 120 (2014), 3410-3417, https://doi.org/10.1002/cncr.28877.
  • Schulz-Ertner, D., Tsujii, H., Particle radiation therapy using proton and heavier ion beams, J. Clin. Oncol., 25 (2007), 953-964, https://doi.org/10.1200/JCO.2006.09.7816.
  • Grun, R., Friedrich, T., Kramer, M., Zink, K., Durante, M., Engenhart-Cabillic, R., Scholz, M., Assessment of potential advantages of relevant ions for particle therapy: a model based study, Med. Phys., 42 (2015), 1037-1047, https://doi.org/10.1118/1.4905374.
  • Phillips, T.L., Fu, K.K., Curtis, S.B., Tumor biology of helium and heavy ions, Int. J. Radiat. Oncol. Biol. Phys., 3 (1977), 109-113, https://doi.org/10.1016/0360-3016(77)90236-x.
  • Strobele, J., Schreiner, T., Fuchs, H., Georg, D., Comparison of basic features of proton and helium ion pencil beams in water using GATE, Z Med. Phys., 22 (2012), 170-178, https://doi.org/10.1016/j.zemedi.2011.12.001.
  • Orecchia, R., Krengli, M., Jereczek-Fossa, B.A., Franzetti, S., Gerard, J.P., Clinical and research validity of hadrontherapy with ion beams, Crit. Rev. Oncol. Hematol., 51 (2004), 81-90, https://doi.org/10.1016/j.critrevonc.2004.04.005.
  • Karger, C.P., Jakel, O., Palmans, H., Kanai, T., Dosimetry for ion beam radiotherapy, Phys. Med. Biol., 55 (2010), R193-R234, https://doi.org/10.1088/0031-9155/55/21/R01.
  • Qi, M., Yang, Q., Chen, X., Duan, J., Yang, L., Fast calculation of Mont Carlo ion transport code, J. Phys. Conf. Ser., 1739 (2021), 012030, https://doi.org/10.1088/1742-6596/1739/1/012030.