A novel alternative in wireless and passive sensing: the bended nested split-ring resonator

A novel alternative in wireless and passive sensing: the bended nested split-ring resonator

In this paper, a new split-ring resonator variant, called the bended nested split-ring resonator (B-NSRR) is introduced. B-NSRR is a modified version of the nested split-ring resonator (NSRR) geometry, which has been successfully utilized in sensing of various physical quantities such as strain, displacement and moisture content due to its superior sensitivity, resolution and compactness in comparison to more traditional structures such as SRR and electrical SRR (ESRR). The B-NSRR geometry is demonstrated to allow an even more compact structure, while retaining the high sensitivity level of the NSRR. The performances obtained by the SRR, ESRR, NSRR and B-NSRR geometries are compared for displacement and moisture content sensing applications. Simulations are carried out to validate the findings, where modified versions of SRR-based structures are employed as displacement sensors and a comparison is made between their performances. Owing to its compactness and high sensitivity, it is shown that the B-NSRR is a reasonable alternative to available geometries in various sensing applications.

___

  • Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S., Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84 (18) (2000), 4184–4187, https://doi.org/10.1103/PhysRevLett.84.4184.
  • Shelby, R. A., Smith, D. R., Schultz, S., Experimental verification of a negative index of refraction, Science, 292 (5514) (2001), 77–79, https://doi.org/10.1126/science.1058847.
  • Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C., Schultz, S., Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett., 78 (4) (2001), 489–491, https://doi.org/10.1063/1.1343489.
  • Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (18) (2000), 3966–3969, https://doi.org/10.1103/PhysRevLett.85.3966.
  • Enoch, S., Tayeb, G., Sabouroux, P., Guerin, N., Vincent, P., A metamaterial for directive emission, Phys. Rev. Lett., 89 (21) (2002), 213902, https://doi.org/10.1103/PhysRevLett.89.213902.
  • Erentok, A. and Luljak, P. L. and Ziolkowski, R. W., Characterization of a volumetric meta-material realization of an artificial magnetic conductor for antenna applications, IEEE Trans. Antennas Propag., 53 (1) (2005), 160-172, https://doi.org/10.1109/TAP.2004.840534.
  • Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D. R., Metamaterial electromagnetic cloak at microwave frequencies, Science, 314 (5801) (2006), 977–980, https://doi.org/10.1126/science.1133628.
  • Engheta, N., An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antennas Wireless Propag. Lett., 1 (2002), 10-13,https://doi.org/10.1109/LAWP.2002.802576.
  • Antoniades, M. A., Eleftheriades, G. V., Compact linear lead/lag metamaterial phase shifters for broadband applications, IEEE Antennas Wireless Propag. Lett., 2 (2003), 103-106, https://doi.org/10.1109/LAWP.2003.815280.
  • Falcone, F., Lopetegi, T., Baena, J. D., Marques, R., Martin, F., Sorolla, M., Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators, IEEE Microw. Wireless Compon. Lett., 14 (6) (2004), 280-282, https://doi.org/10.1109/LMWC.2004.828029.
  • Antoniades, M. A., Eleftheriades, G. V., A broadband Wilkinson balun using microstrip metamaterial lines, IEEE Antennas Wireless Propag. Lett., 4 (2005), 209–212, https://doi.org/10.1109/LAWP.2005.851005.
  • Ziolkowski, R. W., Kipple, A. D., Application of double negative materials to increase the power radiated by electrically small antennas, IEEE Trans. Antennas Propag., 51 (10) (2003), 2626–2640, https://doi.org/10.1109/10.1109/TAP.2003.817561.
  • Chen, T., Li, S., Sun, H., Metamaterials application in sensing, Sensors, 12 (3) (2012), 2742–2765, https://doi.org/10.3390/s120302742.
  • Lee, H.-J., Lee, J.-H., Moon, H.-S., Jang, I.-S., Choi, J.-S., Yook, J.-G., Jung, H.-I., A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules, Sens. Actuators, B, 169 (2012), 26-31, https://doi.org/10.1016/j.snb.2012.01.044.
  • Al-Naib, I. A. I., Jansen, C., Koch M., Thin-film sensing with planar asymmetric metamaterial resonators, Appl. Phys. Lett., 93 (8) (2008), 083507, https://doi.org/10.1063/1.2976636.
  • Melik, R., Unal, E., Perkgoz, N. K., Puttlitz, C., Demir, H. V., Metamaterial based telemetric strain sensing in different materials, Opt. Express, 18 (5) (2010), 5000–5007, https://doi.org/10.1364/OE.18.005000.
  • Tian, X., Lee, P. M. Tan, Y. J., Wu, T. L. Y., Yao, H., Zhang, M., Li, Z., Ng, K. A., Tee, B. C. K., Ho, J. S., Wireless body sensor networks based on metamaterial textiles, Nat. Electron., 2 (6) (2019), 243-251, https://doi.org/10.1038/s41928-019-0257-7.
  • Ekmekci, E., Turhan-Sayan, G., Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate, Appl. Phys. A: Mater. Sci. Process., 110 (2013), 189-197, https://doi.org/10.1007/s00339-012-7113-1.
  • Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 47 (11) (1999), 2075- 2084, https://doi.org/10.1109/22.798002.
  • Engheta, N., Ziolkowski, R. W., Electromagnetic Metamaterials: Physics and Engineering Explorations, Wiley, Hoboken, N.J., 2006.
  • Padilla, W. J., Aronsson, M. T., Highstrete, C., Lee, M., Taylor, A. J.,Averitt, R. D., Electrically resonant terahertz metamaterials: Theoretical and experimental investigations, Phys. Rev. B: Condens. Matter, 75 (4) (2007), 041102, https://doi.org/10.1103/PhysRevB.75.041102.
  • Zhang, J., Tian, G. Y., Marindra, A. M. J., Sunny, A. I., Zhao, A. B., A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications, Sensors, 17 (2) (2017), 265, https://doi.org/10.3390/s17020265.
  • Melik, R., Unal, E., Perkgoz, N.K., Santoni, B., Kamstock, D., Puttlitz, C., Demir, H.V., Nested metamaterials for wireless strain sensing, IEEE J. Sel. Topics Quantum Electron., 16 (2) (2010), 450-458, https://doi.org/10.1109/JSTQE.2009.2033391.
  • Ozbey, B., Unal, E., Ertugrul, H., Kurc, O., Puttlitz, C. M., Erturk, V. B., Altintas, A., Demir, H. V., Wireless displacement sensing enabled by metamaterial probes for remote structural health monitoring, Sensors, 14 (1) (2014), 1691-1704, https://doi.org/10.3390/s140101691.
  • Ozbey, B., Demir, H. V., Kurc, O., Erturk, V. B., Altintas, A., Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor, Sensors, 14 (10) (2014), 19609- 19621, https://doi.org/10.3390/s141019609.
  • Ozbey, B., Demir, H. V., Kurc, O., Erturk, V. B., Altintas, A., Wireless sensing in complex electromagnetic media: Construction materials and structural monitoring, IEEE Sensors J., 15 (10) (2015), 5545–5554, https://doi.org/10.1109/JSEN.2015.2441555.
  • Ozbey, B., Erturk, V. B., Demir, H. V., Altintas, A., Kurc, O., A wireless passive sensing system for displacement/strain measurement in reinforced concrete members, Sensors, 16 (4) (2016), 496, https://doi.org/10.3390/s16040496.
  • Ozbey, B., Range extension in coupling-based wireless passive displacement sensors for remote structural health monitoring, IEEE Sensors J., 22 (21) (2022), 20268-20275, https://doi.org/10.1109/JSEN.2022.3206475.
  • Ozbey, B., Ert¨urk, V. B., Kurc, O., Altintas, A., Demir, H. V., Multi-point single-antenna sensing enabled by wireless nested split-ring resonator sensors, IEEE Sensors J., 16 (21) (2016), 7744–7752, https://doi.org/10.1109/JSEN.2016.2604020.
  • Ozbey, B., Wireless surface strain mapping by passive electromagnetic resonators, IEEE Sensors J., 23 (10) (2023), 10370-10377, https://doi.org/10.1109/JSEN.2023.3264948.
  • Ozbey, B., Eibert, T. F., Wireless non-destructive moisture content characterization of trees by highly-sensitive compact resonating probes, IEEE Sensors J., 21 (5) (2021), 6125–6132, https://doi.org/10.1109/JSEN.2020.3043304.
  • Ozbey, B., Altintas, A., Demir, H. V., Ertürk, V. B., An equivalent circuit model fornested split-ring resonators, IEEE Trans. Microw. Theory Tech., 65 (10) (2017), 3733–3743, https://doi.org/10.1109/TMTT.2017.2699650.
  • Dassault Systemes, CST Studio Suite, Velizy-Villacoublay, France, 2019.
  • James, W. L., Dielectric Properties of Wood and Hardboard: Variation with Temperature, Frequency, Moisture Content, and Grain Orientation. Department of Agriculture, Forest Service, Forest Products Laboratory, 1975.