A new astronomical parameter from remote sensing data: Astronomical clearness index (ACI)

Öz Eastern Anatolia Observatory (DAG) project was initiated in Erzurum/Turkey in 2011. DAG will have Turkey’s largest (4 m) and first infrared telescope. The installation process is planned to be by taking its first light in the end of 2021. This study was focused on a new analysis method about the atmospheric properties of DAG site in terms of the cloudiness as known the most vital atmospheric parameter for ground-based astronomical observatories. In this regard, the cloudiness for DAG site is comprehensively examined using the “Cloud Mask” (CMa) and “Cloud Type” (CT) products from Satellite Application Facility on Support to Nowcasting and Very Short-Range Forecasting (NWC SAF). Firstly, the cloudiness and the cloud types over DAG site were determined. Secondly, NWC SAF CMa and CT data have been redefined for astronomical purposes, and the pixel values/meanings in CMa and CT images have been reduced from 6 to 4 and from 21 to 4 pixels, respectively. Thirdly, these new data were used to define a new index named as “Astronomical Clearness Index” (ACI), and finally, the observable days for DAG site were determined using this newly defined index.

___

McInnes, B., Walker, M.F., Astronomical site testing in the Canary Islands, Publications of the Astronomical Society of the Pacific, 86 (512) (1974), 529-544. https://doi.org/10.1086/129641

Calisse, P.G., Ashley, M.C.B., Burton, M.G., Phillips, M.A., Storey, J.W.V., Radford, S.J.E., Peterson, J.B., Submillimeter site testing at Dome C, Antarctica, Publications of the Astronomical Society of Australia, 21 (3) (2004), 256-263. https://doi.org/10.1071/AS03018

Schöck, M., Els, S., Riddle, R., Skidmore, W., Travouillon, T., Blum, R., Bustos, E., Chanan, G., Djorgovski, S. G., Gillett, P., Gregory, B., Nelson, J., Otárola, A., Seguel, J., Vasquez, J., Walker, A., Walker, D., Wang, L., Thirty meter telescope site testing I: overview, Publications of the Astronomical Society of the Pacific, 121 (878) (2009), 384- 395. https://doi.org/10.1086/599287

Vernin, J., Muñoz-Tuñón, C., Sarazin, M., Vazquez Ramió, H., Varela, A.M., Trinquet, H., Delgado, J.M., Jiménez Fuensalida, J., Reyes, M., Benhida, A., Benkhaldoun, Z., Garcia Lambas, D., Hach, Y., Lazrek, M., Lombardi, G., Navarrete, J., Recabarren, P., Renzi, V., Sabil, M., Vrech, R., European extremely large telescope site characterization I: overview, Publications of the Astronomical Society of the Pacific, 123 (909) (2011), 1334-1346. https://doi.org/10.1086/662995

Hidayat, T., Mahasena, P., Dermawan, B., Hadi, T. W., Premadi, P. W., Herdiwijaya, D., Clear sky fraction above Indonesia: an analysis for astronomical site selection, Monthly Notices of the Royal Astronomical Society, 427 (3) (2012), 1903-1917. https://doi.org/10.1111/j.1365-2966.2012.22000.x

Koc-San, D., San, B. T., Bakış, V., Helvacı, M., Eker, Z., Multi-Criteria Decision Analysis integrated with GIS and remote sensing for astronomical observatory site selection in Antalya province, Turkey, Advances in Space Research, 52 (1) (2013), 39- 51. https://doi.org/10.1016/j.asr.2013.03.001

Aksaker, N., Yerli, S. K., Erdoğan, M. A., Erdi, E., Kaba, K., Ak, T., Aslan, Z., Bakış, V., Demircan, O., Evren, S., Keskin, V., Küçük, İ., Özdemir, T., Özışık, T., Selam, S. O., Astronomical site selection for Turkey using GIS techniques, Experimental Astronomy, 39 (3) (2015), 547-566. https://doi.org/10.1007/s10686-015-9458-x

Falvey, M., Rojo, P.M., Application of a regional model to astronomical site testing in western Antarctica, Theoretical and Applied Climatology, 125 (3-4) (2016), 841-862. https://doi.org/10.1007/s00704-016-1794-x

Hellemeier, J.A., Yang, R., Sarazin, M., Hickson, P., Weather at selected astronomical sites - an overview of five atmospheric parameters, Monthly Notices of the Royal Astronomical Society, 482 (4) (2019), 4941-4950. https://doi.org/10.1093/mnras/sty2982

Aksaker, N., Yerli, S.K., Erdoğan, M.A., Kurt, Z., Kaba, K., Bayazit, M., Yeşilyaprak, C., Global site selection for astronomy, Monthly Notices of the Royal Astronomical Society, 493 (1) (2020), 1204-1216. https://doi.org/10.1093/mnras/staa201

Badescu, V., Dumitrescu, A., CMSAF products Cloud Fraction Coverage and Cloud Type used for solar global irradiance estimation, Meteorology and Atmospheric Physics, 128 (4) (2016), 525–535. https://doi.org/10.1007/s00703-015-0424-y

Chernokulsky, A., Esau, I., Cloud cover and cloud types in the Eurasian Arctic in 1936- 2012, International Journal of Climatology, 39 (15) (2019), 5771-5790. https://doi.org/10.1002/joc.6187

Kotarba, A.Z., Chacewicz, S., Żmudzka, E., Night sky photometry over Warsaw (Poland) evaluated simultaneously with surface-based and satellite-based cloud observations, Journal of Quantitative Spectroscopy and Radiative Transfer, 235 (2019), 95-107. https://doi.org/10.1016/j.jqsrt.2019.06.024

Toy S, Kantor N. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city. Environmental Science and Pollution Research, 24 (2) (2017), 1811-1820. https://doi.org/10.1007/s11356-016-7902-8

Derrien, M., Le Gléau, H., MSG/SEVIRI cloud mask and type from SAFNWC, International Journal of Remote Sensing, 26 (21) (2005), 4707-4732. https://doi.org/10.1080/01431160500166128

Yüzlükoğlu F., Erzurum ve çevresinin astronomi gözlemleri açısından atmosferik özellikleri. M.Sc. Thesis, Atatürk University, Erzurum, Turkey, 2017.

Marks, R. D., Astronomical seeing from the summits of the Antarctic plateau, Astronomy & Astrophysics, 385 (1) (2002), 328-336. https://doi.org/10.1051/0004-6361:20020132

Seghouani, N., Boer, M., & Mimouni, J., National Aures Observatory: A new multimessenger facility, Journal of Physics: Conference Series, 1269 (1) (2019), 012001.